Magnetic Barkhausen Measurements for Determining Residual Stress Distribution in Welded Electrical Steels

Article Preview

Abstract:

In the present research work the determination of residual stress distribution in welded non-oriented electrical steel samples is discussed. Tungsten Inert Gas and Electron Beam Welding were used as the welding methods. The residual stresses induced by welding estimated by the magnetic, non-destructive method of Barkhausen noise and were compared with the values resulting from the semi-destructive method of X-ray diffraction Bragg-Brentano (XRD-BB). In order to evaluate accuracy and reliability of the magnetic methods applied, the steel samples were subjected in both compressive and tensile stress and the magnetic noise values were correlated to residual stress values through an appropriate calibration curve. Furthermore, the fluctuations of the residual stresses in the welding zones of the welded samples were discussed on the basis of the experimental evidence and the microstructural changes occurring during welding. It was found that the residual stress determined by MBN method was in good agreement with the XRD-BB results. However, the residual stress determined by magnetic permeability method was not in good agreement with the XRD-BB results. In contrast to the XRD-BB method, the magnetic techniques required a precise calibration procedure in all zones with noticeably different microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-152

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials (John Wileys & Sons, Hoboken, 2009).

Google Scholar

[2] D.C. Jiles: Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London., 1998).

Google Scholar

[3] O. Stupakov: J. Nondestruct. Eval., Vol. 32 (2013), p.405.

Google Scholar

[4] G. Vértesy, I. Mészáros and I. Tomáš: NDT & E Int., Vol. 54 (2013), p.107.

Google Scholar

[5] P. Haušild, K. Kolařík and M. Karlík: Mater. Design, Vol. 44 (2013), p.548.

Google Scholar

[6] P. Vourna, A. Ktena, P.E. Tsakiridis and E. Hristoforou: NDT & E Int., Vol. 71 (2015), p.33.

Google Scholar

[7] P. Vourna, A. Ktena and E. Hristoforou: IEEE Trans. Magn., Vol. 50 (2014), p.1.

Google Scholar

[8] P. Vourna, C. Hervoches, M. Vrána, A. Ktena and E. Hristoforou: IEEE Trans. Magn., DOI 10. 1109/TMAG. 2014. 2357840.

Google Scholar

[9] A. Ktena, E. Hristoforou, G.J.L. Gerhardt, F.P. Missell, F.J.G. Landgraf, Jr D.L. Rodrigues and M. Alberteris-Campos: Physica B: Coned Matter, Vol. 435 (2014), p.109.

DOI: 10.1016/j.physb.2013.09.027

Google Scholar

[10] J. Pal'a and J. Bydžovský: Measurement Vol. 46 (2013), p.866.

Google Scholar

[11] E. Hristoforou, J. Opt. Adv. Mat., Vol. 4 (2002), p.245.

Google Scholar

[12] K. Kosmas, C. Sargentis, D. Tsamakis and E. Hristoforou: J. Mat. Proc. Tech., Vol. 161 (2005), p.359.

Google Scholar

[13] E. Hristoforou, R.E. Reilly and D. Niarchos: IEEE Trans. Magn., Vol. 29 (1993), p.3171.

Google Scholar

[14] K. Kosmas and E. Hristoforou: International J. of App. Electr. and Mech., Vol. 25 (2007), p.319.

Google Scholar

[15] E. Hristoforou: Review Article, Meas. Sci. & Technol., Vol. 14 (2003), p. R15.

Google Scholar

[16] E. Hristoforou, D. Niarchos, H. Chiriac and M. Neagu: Sensors & Actuators A, Vol. 92 (2001), p.132.

DOI: 10.1016/s0924-4247(01)00551-9

Google Scholar

[17] E. Hristoforou and K. Kosmas: Int. J. of Appl. Electrom. and Mechanics, Vol. 25 (2007), p.287.

Google Scholar

[18] E. Hristoforou and R.E. Reilly: J. Magn. Magn. Mat., Vol. 119 (1993), p.247.

Google Scholar

[19] E. Hristoforou, K. Kosmas and M. Kollar: J. Electr. Eng., Vol. 59 (2008), p.90.

Google Scholar

[20] B. Augustyniak, L. Piotrowski, M. Chmielewski, K. Kosmas and E. Hristoforou: IEEE Trans. Magn., Vol. 46 (2010), p.544.

DOI: 10.1109/tmag.2009.2033340

Google Scholar

[21] L. Piotrowski, B. Augustyniak, M. Chmielewski, E. Hristoforou and K. Kosmas: IEEE Trans. Magn., Vol. 46 (2010), p.239.

DOI: 10.1109/tmag.2009.2034020

Google Scholar

[22] F.A. Franco, M.F.R. González, M.F. De Campos and L.R. Padovese: J. Nondestruct. Eval., Vol. 32 (2013), p.93.

Google Scholar

[23] M. Blaow, J.T. Evans and B.A. Shaw: Acta Mater, Vol. 53 (2005), p.279.

Google Scholar

[24] L. Batista, U. Rabe and S. Hirsekorn: NDT & E Int., Vol. 57(2013), p.58.

Google Scholar

[25] N. Kasai, H. Koshino, K. Sekine, H. Kihira and M. Takahashi: J. Nondestruct. Eval., Vol. 32 (2013), p.277.

Google Scholar