[1]
http: /www. headinjuryctr-stl. org/statistics. html.
Google Scholar
[2]
K. Cranen, C. H. Drossaert, E. S. Brinkman, A. L. Braakman-Jansen, M. J. Ijzerman, and M. M. Vollenbroek-Hutten, (2011).
Google Scholar
[3]
M. R. Golomb, B. C. Mcdonald, S. J. Warden, J. Yonkman, A. J. Saykin, B. Shirley, M. Huber, B. Rabin, M. Abdelbaky, M. E. Nwosu, M. Barkat-Masih, and G. C. Burdea, In-home virtual reality videogame tele rehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, (2010).
DOI: 10.1016/j.apmr.2009.08.153
Google Scholar
[4]
D. Perez-Marcos, M. Solazzi, W. Steptoe, O. Oyekoya, A. Frisoli, T. Weyrich, A. Steed, F. Tecchia, M. Slater, M.V. Sanchez-Vives: A fully-immersive set-up for remote interaction and neurorehabilitation based on virtual body ownership. Frontiers in Neurology (2012).
DOI: 10.3389/fneur.2012.00110
Google Scholar
[5]
P. Lucey, J. F. Cohn, I. Matthews, S. Lucey, S. Sridharan, J. Howlett, and K.M. Prkachin. Automatically detecting pain in video through facial action units, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 3, (june 2011), p.664.
DOI: 10.1109/tsmcb.2010.2082525
Google Scholar
[6]
S. Kaltwang, O. Rudovic, M. Pantic, Continuous Pain Intensity Estimation from Facial Expressions, 8th International Symposium, ISVC 2012, Rethymnon, Crete, Greece, July 16-18, (2012), pp.368-377.
DOI: 10.1007/978-3-642-33191-6_36
Google Scholar
[7]
G.C. Littlewort, M.S. Bartlett, and M.S. Kang, 2007. Faces of Pain: Automated Measurement of Spontaneous Facial Expressions of Genuine and Posed Pain. Proc. ICMI, Nagoya, Aichi, Japan, November 12–15, (2007).
DOI: 10.1145/1322192.1322198
Google Scholar
[8]
T. Cootes, G. Edwards, C. Taylor, Active appearance models, IEEE PAMI 23 (6) (2001) p.681–685.
Google Scholar
[9]
P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon, and I. Matthews: Painful data: The UNBC-McMaster shoulder pain expression archive database, in IEEE International Conference on Automatic Face and Gesture Recognition, (2011), p.57–64.
DOI: 10.1109/fg.2011.5771462
Google Scholar
[10]
K. Prkachin, The consistency of facial expressions of pain: a comparison across modalities, Pain, vol. 51, (1992) p.297–306.
DOI: 10.1016/0304-3959(92)90213-u
Google Scholar
[11]
K. Prkachin and P. E. Solomon, The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain, Pain, vol. 139, (2008), p.267–274.
DOI: 10.1016/j.pain.2008.04.010
Google Scholar
[12]
P. Viola and M. Jones: Rapid object detection using a boosted cascade of simple features, in IEEE Conference on Computer Vision and Pattern Recognition, (2001).
DOI: 10.1109/cvpr.2001.990517
Google Scholar
[13]
Xuehan-Xiong, F. De la Torre: Supervised descent method and its application to face alignment, in CVPR (2013).
Google Scholar
[14]
D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, nol. 60, no. 2, (2004), p.91–110.
DOI: 10.1023/b:visi.0000029664.99615.94
Google Scholar
[15]
Intraface: http: /www. humansensing. cs. cmu. edu/intraface.
Google Scholar
[16]
Chang, C. -C., Lin, C. -J.: LibSVM: a library for support vector machines.
Google Scholar
[17]
R. A. Khan, A. Meyer, H. Konik, and S. Bouakaz, Pain detection through shape and appearance features, in Multimedia and Expo (ICME), 2013 IEEE International Conference on, (2013), p.1–6.
DOI: 10.1109/icme.2013.6607608
Google Scholar
[18]
Hammal, Z., Cohn, J.F.: Automatic detection of pain intensity. In: Proceedings of the 14th ACM International Conference on Multimodal Interaction, ICMI 2012, ACM (2012), p.47–52.
DOI: 10.1145/2388676.2388688
Google Scholar
[19]
A.B. Ashraf, S. Lucey, J. F. Cohn, T. Chen, Z. Ambadar, K. M. Prkachin, and P. E. Solomon, The painful face - pain expression recognition using active appearance models, Image and Vision Computing, vol. 27, no. 12, (2009) p.1788 – 1796.
DOI: 10.1016/j.imavis.2009.05.007
Google Scholar