Automatic Pain Detection in Video Sequences for Neuro-Rehabilitation

Article Preview

Abstract:

Adaptive and interactive mental engagement combined with positive emotional state are requirements for an optimal outcome of the neuro-rehabilitation process for patients with brain damage usually caused by TBI (traumatic brain injury), stroke or brain disease such as cancer, epilepsy, and Alzheimer's disease. We propose a method for automatic pain recognition in video sequences using the landmarks data from Supervised Descent Method and applying Support Vector Machine (SVM) for data classification. This method is suitable for being part of assistive medical system for neuro-rehabilitation of patients with TBI. The experiments with a video dataset with patients with shoulder pain show very good recognition rate (95,7%) for recognizing the painful facial states of the subjects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-218

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] http: /www. headinjuryctr-stl. org/statistics. html.

Google Scholar

[2] K. Cranen, C. H. Drossaert, E. S. Brinkman, A. L. Braakman-Jansen, M. J. Ijzerman, and M. M. Vollenbroek-Hutten, (2011).

Google Scholar

[3] M. R. Golomb, B. C. Mcdonald, S. J. Warden, J. Yonkman, A. J. Saykin, B. Shirley, M. Huber, B. Rabin, M. Abdelbaky, M. E. Nwosu, M. Barkat-Masih, and G. C. Burdea, In-home virtual reality videogame tele rehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, (2010).

DOI: 10.1016/j.apmr.2009.08.153

Google Scholar

[4] D. Perez-Marcos, M. Solazzi, W. Steptoe, O. Oyekoya, A. Frisoli, T. Weyrich, A. Steed, F. Tecchia, M. Slater, M.V. Sanchez-Vives: A fully-immersive set-up for remote interaction and neurorehabilitation based on virtual body ownership. Frontiers in Neurology (2012).

DOI: 10.3389/fneur.2012.00110

Google Scholar

[5] P. Lucey, J. F. Cohn, I. Matthews, S. Lucey, S. Sridharan, J. Howlett, and K.M. Prkachin. Automatically detecting pain in video through facial action units, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 3, (june 2011), p.664.

DOI: 10.1109/tsmcb.2010.2082525

Google Scholar

[6] S. Kaltwang, O. Rudovic, M. Pantic, Continuous Pain Intensity Estimation from Facial Expressions, 8th International Symposium, ISVC 2012, Rethymnon, Crete, Greece, July 16-18, (2012), pp.368-377.

DOI: 10.1007/978-3-642-33191-6_36

Google Scholar

[7] G.C. Littlewort, M.S. Bartlett, and M.S. Kang, 2007. Faces of Pain: Automated Measurement of Spontaneous Facial Expressions of Genuine and Posed Pain. Proc. ICMI, Nagoya, Aichi, Japan, November 12–15, (2007).

DOI: 10.1145/1322192.1322198

Google Scholar

[8] T. Cootes, G. Edwards, C. Taylor, Active appearance models, IEEE PAMI 23 (6) (2001) p.681–685.

Google Scholar

[9] P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon, and I. Matthews: Painful data: The UNBC-McMaster shoulder pain expression archive database, in IEEE International Conference on Automatic Face and Gesture Recognition, (2011), p.57–64.

DOI: 10.1109/fg.2011.5771462

Google Scholar

[10] K. Prkachin, The consistency of facial expressions of pain: a comparison across modalities, Pain, vol. 51, (1992) p.297–306.

DOI: 10.1016/0304-3959(92)90213-u

Google Scholar

[11] K. Prkachin and P. E. Solomon, The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain, Pain, vol. 139, (2008), p.267–274.

DOI: 10.1016/j.pain.2008.04.010

Google Scholar

[12] P. Viola and M. Jones: Rapid object detection using a boosted cascade of simple features, in IEEE Conference on Computer Vision and Pattern Recognition, (2001).

DOI: 10.1109/cvpr.2001.990517

Google Scholar

[13] Xuehan-Xiong, F. De la Torre: Supervised descent method and its application to face alignment, in CVPR (2013).

Google Scholar

[14] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, nol. 60, no. 2, (2004), p.91–110.

DOI: 10.1023/b:visi.0000029664.99615.94

Google Scholar

[15] Intraface: http: /www. humansensing. cs. cmu. edu/intraface.

Google Scholar

[16] Chang, C. -C., Lin, C. -J.: LibSVM: a library for support vector machines.

Google Scholar

[17] R. A. Khan, A. Meyer, H. Konik, and S. Bouakaz, Pain detection through shape and appearance features, in Multimedia and Expo (ICME), 2013 IEEE International Conference on, (2013), p.1–6.

DOI: 10.1109/icme.2013.6607608

Google Scholar

[18] Hammal, Z., Cohn, J.F.: Automatic detection of pain intensity. In: Proceedings of the 14th ACM International Conference on Multimodal Interaction, ICMI 2012, ACM (2012), p.47–52.

DOI: 10.1145/2388676.2388688

Google Scholar

[19] A.B. Ashraf, S. Lucey, J. F. Cohn, T. Chen, Z. Ambadar, K. M. Prkachin, and P. E. Solomon, The painful face - pain expression recognition using active appearance models, Image and Vision Computing, vol. 27, no. 12, (2009) p.1788 – 1796.

DOI: 10.1016/j.imavis.2009.05.007

Google Scholar