Effect of Concentration of Oxalic Acid on the Synthesis of Porous Anodic Alumina (PAA) on Aluminum Alloy AA6061

Article Preview

Abstract:

In this study, porous anodic alumina was formed by anodizing of aluminum alloy AA6061 in oxalic acid with concentration ranged from 0.1 M to 1.0 M respectively. AA6061 alloys were anodized at 40 V and 25°C for 60 minutes. FESEM images show that the uniformity of the pores arrangement of porous anodic alumina depends significantly on the concentration of oxalic acid. Well-ordered porous anodic alumina was formed in oxalic acid of 0.3 M, 0.5 M and 0.7 M while disordered porous anodic alumina were formed when the oxalic acid of 0.1 M and 1.0 M were used as electrolytes. EDX analysis revealed that the only peaks corresponding to aluminum and oxygen were detected. Pore size was found to increase with the concentration of oxalic acid while the interpore distance remained almost unchanged although the concentration of oxalic acid increased from 0.1 M to 0.7 M. Atypical anodic alumina without pores arrangement was formed when 1.0 M oxalic acid was used for anodizing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-285

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Keller, M.S. Hunter and D.L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc. 100 (1953) 411-419.

DOI: 10.1149/1.2781142

Google Scholar

[2] S. Ono and N. Masuko, Evaluation of pore diameter of anodic porous films formed on aluminium, Surf. Coat. Technol. 169 (2003) 139-142.

DOI: 10.1016/s0257-8972(03)00197-x

Google Scholar

[3] H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science. 268 (1995) 1466-1648.

DOI: 10.1126/science.268.5216.1466

Google Scholar

[4] N. Kwon, K. Kim, J. Heo and I. Chung, Fabrication of ordered anodic aluminum oxide with matrix arrays of pores using nanoimprint, J. Vac. Sci. Technol. A 27 (2009) 803-807.

DOI: 10.1116/1.3139884

Google Scholar

[5] C. Y. Liu, A. Datta, and Y.L. Wang, Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces, Appl. Phys. Lett. 78 (2001) 120-122.

DOI: 10.1063/1.1335543

Google Scholar

[6] G. H. Jeong, S.K. Lim, J.K. Park, D. Lee, B.K. Lee and S.J. Suh, Nano-pore arrays of anodic aluminum oxide fabricated using a Cr mask, Microprocesses and Nanotechnology, 2007 Digest of papers (2007) 192-193.

DOI: 10.1109/imnc.2007.4456169

Google Scholar

[7] L. Zaraska, G.D. Sulka, J. Szeremeta, and M. Jaskuła, Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum, Electrochim. Acta 55 (2010) 4377-4386.

DOI: 10.1016/j.electacta.2009.12.054

Google Scholar

[8] I. Tsangaraki-Kaplanoglou, S. Theohari, T. Dimogerontakis, Y.M. Wang, H. H. Kuo and S. Kia, Effect of alloy types on the anodizing process of aluminum, Surf. Coat. Technol. 200 (2006) 2634-2641.

DOI: 10.1016/j.surfcoat.2005.07.065

Google Scholar

[9] C. H. Voon, M. N. Derman, and U. Hashim, Effect of manganese content on the fabrication of porous anodic alumina, J. Nanomater. 2012 (2012) 1-9.

DOI: 10.1155/2012/752926

Google Scholar

[10] C. H. Voon, M. N. Derman, U. Hashim, K. R. Ahmad, and K. L. Foo, Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys, J. Nanomater. 2013 (2013) 1-8.

DOI: 10.1155/2013/167047

Google Scholar

[11] C. H. Voon, M. N. Derman, U. Hashim, and K. L. Foo, Effect of electrolyte concentration on the growth of porous anodic aluminium oxide (AAO) on Al-Mn alloys, Adv. Mat. Res. 626 (2013) 610-614.

DOI: 10.4028/www.scientific.net/amr.626.610

Google Scholar

[12] C. H. Voon, M. N. Derman, U. Hashim and K. R. Ahmad, Effect of anodizing voltage on the growth kinetics of porous anodic alumina on Al-0. 5 wt% Mn alloys, Adv. Mat. Res. 795 (2013) 56-59.

DOI: 10.4028/www.scientific.net/amr.795.56

Google Scholar

[13] C. H. Voon, M. N. Derman, U. Hashim, and K. L. Foo and T. Adam, Effect of anodizing voltage on the morphology and growth kinetics of porous anodic alumina on Al-0. 5 wt% Mn alloys, Adv. Mat. Res. 832 (2014) 101-106.

DOI: 10.4028/www.scientific.net/amr.832.101

Google Scholar

[14] C.H. Voon, M.N. Derman, U. Hashim, K.R. Ahmad, and L.N. Ho, A simple one-step anodising method for the synthesis of ordered porous anodic alumina, J. Exe. Nanosci. 9 (2014) 106-112.

DOI: 10.1080/17458080.2011.630151

Google Scholar

[15] R. H. Bustamante, D. Raimundo, H. A. Champi, H. Y. Kim and W. J. Salcedo, Fabrication of porous anodic alumina by single-step anodization: influence of the molar concentration and effect of the chemical etching, ECS Trans. 39 (2011) 401-408.

DOI: 10.1149/1.3615219

Google Scholar

[16] N. Q. Zhao, X. X. Jiang, C. S. Shi, J. J. Li, Z. G. Zhao and X. W. Du, Effects of anodizing conditions on anodic alumina structure, J. Mater. Sci. 42 (2007) 3878-3882.

DOI: 10.1007/s10853-006-0410-3

Google Scholar

[17] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang and W. Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes, J. Membr. Sci. 319 (2008) 192-198.

DOI: 10.1016/j.memsci.2008.03.044

Google Scholar