Optimization of Tin Magneto Electrodeposition under Additive Electrolyte Influence Using Taguchi Method Application

Article Preview

Abstract:

Operational conditions of tin magneto electrodeposition were successfully obtained using Taguchi technique. The parameters which optimize using Taguchi orthogonal array were tin sulphate, sulphuric acid, gluconate concentrations and magnetic strength (Tesla). The gluconate in this process is additive electrolyte which acts as an inhibitor against corrosion. The effects of those parameters toward the fractal dimension of tin electrodeposits were studied in this research. The results show that microstructures of tin electrodeposit from magneto electrodeposition have a compact structure than the tin electrodeposits of conventional electrodeposition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-91

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Torrent-Burgues, E. Guaus, F. Sanz, Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate, J. Appl. Electrochem., 32(2002) 225–230.

DOI: 10.4152/pea.200103247

Google Scholar

[2] Sudibyoand N. Aziz, Semi-empirical Equation of Limiting Current for CobaltElectrodeposition in the Presence of Magnetic Field andAdditive Electrolyte, AIP Conf. Proc. 1711(2015) 020003-1–020003-6.

Google Scholar

[3] J.T. Matsushima, F. Trivinho-Strixino, E. C. Pereira, Investigation of cobalt deposition using the electrochemical quartz crystal microbalance, Electrochim. Acta, 51(2006) 1960–(1966).

DOI: 10.1016/j.electacta.2005.07.003

Google Scholar

[4] G. J. Acklandand E. S. Tweedie, Microscopic model of diffusion-limited aggregation and electrodeposition in the presence of levelling molecules, School of Physics, The University of Edinburgh, Scotland, United Kingdom, (2007).

Google Scholar

[5] Sudibyo, N. Aziz, Development of semi empirical equation of limiting current for Lead (Pb) Magneto electrodeposition, Procedia Chemistry 16 ( 2015 ) 1 – 7.

DOI: 10.1016/j.proche.2015.12.001

Google Scholar

[6] J. C. Mansur Filho, A. G. Silva, A. T. G. Carvalho, M. L. Martins, Electrocrystallization under magnetic fields: experiment and model, Physica A, 350(2005) 393–406.

DOI: 10.1016/j.physa.2004.11.009

Google Scholar

[7] S. P. Nikolai, M. S. Polina, M. Inoue, Investigations of the magnetic field effect on electrochemical processes. J. Magn. Mag. Mat., 272(2004) 2448-2449.

Google Scholar

[8] J.L. Rosa, A. Robin, M.B. Silva, C.A. Baldan and M.P. Peres, Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J. Proc. Tec. 209( 2009) 1181-1188.

DOI: 10.1016/j.jmatprotec.2008.03.021

Google Scholar

[9] Z. Nor Ain, A. Syamsul Rizal, and A. Khairunisak Abdul, Applying the Taguchi Method to Optimise the Size of Silica Nanoparticles Entrapped with Rifampicin for a Drug Delivery System. J. Engineering Science, 11(2015) 9–16.

Google Scholar

[10] M. Biehl, Modelling and simulation. Institute of Mathematics and Computing Science. The Netherlands, (2005).

Google Scholar

[11] I. Mogi, M. Kamiko, Striking effects of magnetic field on the growth morphology of electrochemical deposits. J. Cryst. Growth, 166(1996) 276-280.

DOI: 10.1016/0022-0248(95)00537-4

Google Scholar

[12] I. Mogi, M. Kamiko, S. Okubo, Magnetic field effects on fractal morphology in electrochemical deposition. Physica B, 211(1995) 319-322.

DOI: 10.1016/0921-4526(94)01055-6

Google Scholar

[13] G. Hinds, F. E. Spada, J. M. . DCoey, T. R. Ni Mhiocha´in, M. E. G. Lyons, Magnetic field effects on copper Electrolysis.J. Phys. Chem. B, 105(2001) 9847-9502.

Google Scholar