A Comparison among Dry Laser Ablation and Some Different Water-Laser Co-Machining Processes of Single Crystal Silicon Carbide

Article Preview

Abstract:

Single crystal silicon carbide (SiC) is a new semiconductor material that has a great potential to be widely used. However, SiC is a kind of difficult-to-machine material due to its extreme hardness and brittleness. The present study investigated the machinability of single crystal SiC using dry laser and three different water-laser co-machining processes. The results indicate that using the hybrid laser-waterjet micro-machining to micro-groove single crystal SiC can derive the clean and straight edges and thermal damage-free grooves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Goel, X. Luo, R.L. Reuben, Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide, Comput. Mater. Sci. 51 (2012) 402-408.

DOI: 10.1016/j.commatsci.2011.07.052

Google Scholar

[2] N. Iwatani, H.D. Doan, K. Fushinobu, Optimization of near-infrared laser drilling of silicon carbide under water, Int. J. Heat Mass Transf. 71 (2014) 515-520.

DOI: 10.1016/j.ijheatmasstransfer.2013.12.046

Google Scholar

[3] K. Katahira, H. Ohmori, S. Takesue, J. Komotori, K. Yamazaki, Effect of atmospheric-pressure plasma jet on polycrystalline diamond micro-milling of silicon carbide, CIRP Ann-Manuf. Technol. 64 (2015) 129-132.

DOI: 10.1016/j.cirp.2015.04.097

Google Scholar

[4] S. Cvetkovic, C. Morsbach, L. Rissing, Ultra-precision dicing and wire sawing of silicon carbide (SiC), Microelectron. Eng. 88 (2011) 2500-2504.

DOI: 10.1016/j.mee.2011.02.026

Google Scholar

[5] S. Goel, X. Luo, P. Comley, R.L. Reuben, A. Cox, Brittle–ductile transition during diamond turning of single crystal silicon carbide, Int. J. Mach. Tools Manuf. 65 (2013) 15-21.

DOI: 10.1016/j.ijmachtools.2012.09.001

Google Scholar

[6] J. Yan, Z. Zhang, T. Kuriyagawa, Mechanism for material removal in diamond turning of reaction-bonded silicon carbide, Int. J. Mach. Tools Manuf. 49 (2009) 366-374.

DOI: 10.1016/j.ijmachtools.2008.12.007

Google Scholar

[7] A. Beaucamp, Y. Namba, H. Combrinck, P. Charlton, R. Freeman, Shape adaptive grinding of CVD silicon carbide, CIRP Ann-Manuf. Technol. 63 (2014) 317-320.

DOI: 10.1016/j.cirp.2014.03.019

Google Scholar

[8] X. Chen, X. Xu, X. Hu, J. Li, M.H. Jiang, S.Z. Jiang, Anisotropy of chemical mechanical polishing in silicon carbide substrates, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 142 (2007) 28-30.

DOI: 10.1016/j.mseb.2007.06.015

Google Scholar

[9] R. Ji, Y. Liu, Y. Zhang, F. Wang, Machining performance of silicon carbide ceramic in end electric discharge milling, Int. J. Refract. Met. Hard Mat. 29 (2011) 117-122.

DOI: 10.1016/j.ijrmhm.2010.09.001

Google Scholar

[10] Y. Liu, R. Ji, Q. Li, L. Yu, X. Li, Electric discharge milling of silicon carbide ceramic with high electrical resistivity, Int. J. Mach. Tools Manuf. 48 (2008) 1504-1508.

DOI: 10.1016/j.ijmachtools.2008.03.012

Google Scholar

[11] P.J. Liew, J. Yan, T. Kuriyagawa, Experimental investigation on material migration phenomena in micro-EDM of reaction-bonded silicon carbide, Appl. Surf. Sci. 276 (2013) 731-743.

DOI: 10.1016/j.apsusc.2013.03.161

Google Scholar

[12] I. Eichentopf, G. Boehm, T. Arnold, Etching mechanisms during plasma jet machining of silicon carbide, Surf. Coat. Technol. 2 (2011) S430-S434.

DOI: 10.1016/j.surfcoat.2011.03.003

Google Scholar

[13] M. Herrmann, K. Sempf, H. Wendrock, M. Schneider, K. Kremmer, A. Michaelis, Electrochemical corrosion of silicon carbide ceramics in sodium hydroxide, J. Eur. Ceram. Soc. 34 (2014) 1687-1693.

DOI: 10.1016/j.jeurceramsoc.2013.12.043

Google Scholar

[14] D.S. Srinivasu, D.A. Axinte, P.H. Shipway, J. Folkes, Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics, Int. J. Mach. Tools Manuf. 49 (2009) 1077-1088.

DOI: 10.1016/j.ijmachtools.2009.07.007

Google Scholar

[15] D.H. Duc, I. Naoki, F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide, Int. J. Heat Mass Transf. 65 (2013) 713-718.

DOI: 10.1016/j.ijheatmasstransfer.2013.06.050

Google Scholar

[16] B. Richerzhagen, M. Kutsuna, H. Okada, T. Ikeda, Waterjet-guided laser processing, Proc. SPIE. Int. Soc. Opt. Eng. 4830 (2003) 91-94.

DOI: 10.1117/12.486514

Google Scholar

[17] R. Molian, C. Neumann, P. Shrotriya, P. Molian, Novel laser/water-jet hybrid manufacturing process for cutting ceramics, J. Manuf. Sci. Eng. Trans. ASME. 130 (2008) 361-374.

DOI: 10.1115/1.2844592

Google Scholar

[18] D. Kalyanasundaram, P. Shrotriya, P. Molian, Obtaining a relationship between process parameters and fracture characteristics for hybrid CO2 laser/waterjet machining of ceramics, J. Eng. Mater. Technol. -Trans. ASME. 131 (2009) 110051-1100510.

DOI: 10.1115/1.3026547

Google Scholar

[19] V. Tangwarodomnukun, J. Wang, C.Z. Huang, H.T. Zhu, An investigation of hybrid laser–waterjet ablation of silicon substrates, Int. J. Mach. Tools Manuf. 56 (2012) 39-49.

DOI: 10.1016/j.ijmachtools.2012.01.002

Google Scholar

[20] H. Zhu, J. Wang, W.Y. Li, H.Z. Li, Microgrooving of germanium wafers using laser and hybrid laser-waterjet technologies, Adv. Mater. Res. 1017 (2014) 193-198.

DOI: 10.4028/www.scientific.net/amr.1017.193

Google Scholar