[1]
Y.H. Yun, Z. Dong, D. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Biodegradable Mg corrosion and osteoblast cell culture studies, Mater. Sci. Eng. C. 29 (2009) 1814-1821.
DOI: 10.1016/j.msec.2009.02.008
Google Scholar
[2]
G. Song, S. Song, A possible biodegradable magnesium implant material, Adv. Eng. Mater. 9 (2007) 298-302.
DOI: 10.1002/adem.200600252
Google Scholar
[3]
H. Wang, Y. Estrin, Z. Zúberová, Bio-corrosion of a magnesium alloy with different processing histories, Mater. Lett. 62 (2008) 2476-2479.
DOI: 10.1016/j.matlet.2007.12.052
Google Scholar
[4]
E.D. Mcbride, Absorbable metal in bone surgery, J. Am. Med. Assoc. 111 (1938) 2464-2467.
Google Scholar
[5]
M.I. Jamesh, G. Wu, Y. Zhao, D.R. McKenzie, M.M.M. Bilek, P.K. Chu, Electro-chemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer's solution and simulated body fluid, Corros. Sci. 91 (2015) 160-184.
DOI: 10.1016/j.corsci.2014.11.015
Google Scholar
[6]
N. Ishida, Z. Abidin, A.D. Atrens, D. Martin, A. Atrens, Corrosion of high purity Mg, Mg2Zn0. 2Mn, ZE41 and AZ91 in Hank's solution at 37℃, Corros. Sci. 53 (2011) 3542-3556.
DOI: 10.1016/j.corsci.2011.06.030
Google Scholar
[7]
M. Ascencio, M. Pekguleryuz, S. Omanovic, An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: the influence of immersion time, Corros. Sci. 87 (2014) 489-503.
DOI: 10.1016/j.corsci.2014.07.015
Google Scholar
[8]
W. Goodman, Experimental aluminium-induced bone disease: studies in vivo, Kidney Int. 29 (1986) 32-36.
Google Scholar
[9]
S. Hirano, K.T. Suzuki, Exposure metabolism, and toxicity of rare earths andrelated compounds, Environ. Health Persp. 104 (1996) 85-95.
DOI: 10.1289/ehp.96104s185
Google Scholar
[10]
N. Von Der Hoh, D. Bormann, A. Lucas, B. Denkena, C. Hackenbroich, A. Meyer-Lindenberg, Influence of different surface machining treatments of magnesium-based resorbable implants on the degradation behavior in rabbits, Adv. Eng. Mater. 11 (2009).
DOI: 10.1002/adem.200800273
Google Scholar
[11]
B. Aksakal, C. Hanyaloglu, Bioceramic dip-coating on Ti-6Al-4V and 316L SS implant materials, J. Mat. Sci. Materials in Medicine. 19 (2008) 2097-2104.
DOI: 10.1007/s10856-007-3304-2
Google Scholar
[12]
M. Salahshoor, Y.B. Guo, Machining characteristics of high speed dry milling of biodegradable Magnesium-Calcium alloy, ASME. Int. Manuf. Sci. Eng. Conf. MSEC. 1 (2010) 279-286.
DOI: 10.1115/msec2010-34310
Google Scholar
[13]
D.L. Hallum, Magnesium: lightweight, easy to machine, Am. Mach. 13 (1995) 948 -951.
Google Scholar
[14]
F.W. Bach, B. Denkena, K. Weinert, P. Alpers, M. Bosse, N. Hammer, Influence of cutting and non-cutting processes on the corrosion behavior and the mechanical properties of magnesium alloys, Proc. 7th. Int. Conf. Mg Alloys & Their App. (2007).
Google Scholar
[15]
M. Videm, R.S. Hansen, N. Tomac, K. Tonnesen, Metallurgical considerations for machining magnesium alloys, SAE. Trans. 103 (1994) 213-220.
DOI: 10.4271/940409
Google Scholar
[16]
L.J. Teng, Analysis of dry turning features of AZ91D magnesium alloys, Suzhou University. (2009).
Google Scholar