Integration of Different Sintering Temperature of Hydroxyapatite and Polyethersulfone Membrane for Fouling Mitigation

Article Preview

Abstract:

This study aimed to investigate the effects of hydroxyapatite integration with polyethersulfone (PES) membrane towards fouling mitigation. PES membrane were modified through self- assembly technique with hydroxyapatite (form fish sclaes) which prepared at different sintering temperatures. This composite membrane were characterized concerning on permeability coefficient, membrane porosity, ATR-FTIR analysis fouling quantification. Overall results showed that PES membrane incorporated with hydroxyapatite sintered at 300°C (PES/FSHAp-300) promoted an excellent characteristics and performance. The membrane demonstrated high permeability coefficient and membrane porosity for about 93.52 L/m2.h and 89.78%, respectively. This kind of membrane was also presented the highest flux recovery ratio around 83.3% and this findings can be a good pathway for the design of low fouling membrane for enzyme separation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-159

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Wei, R. Sun, J. Cui and Z. Wei, Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite, Desalination 263 (2010) 89-96.

DOI: 10.1016/j.desal.2010.06.043

Google Scholar

[2] Y.C. Huang, P.C. Hsiao, and H.J. Chai, Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells, Ceramics International, 37 (2011) 1825–1831.

DOI: 10.1016/j.ceramint.2011.01.018

Google Scholar

[3] S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstienb and S. Chanthai, Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution, Chemical Engineering Journal, 215-216 (2013).

DOI: 10.1016/j.cej.2012.11.054

Google Scholar

[4] S. Sankar, S. Sekar, R. Mohan, S. Rani, J. Sundaraseelan and T.P. Sastry, Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales, Int. J. Biol. Macromol, 42 (2008) 6-98.

DOI: 10.1016/j.ijbiomac.2007.08.003

Google Scholar

[5] S. Kupiec and Z. Wzorek, The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite, Ceramics International, 38 (2012) 641-647.

DOI: 10.1016/j.ceramint.2011.06.065

Google Scholar

[6] R. Rozita, A. Rohana, A.B. Mohamad and M.M. Sam'an, Synthesis and characterisation of pure nanoporous hydroxyapatite, Journal of Physical Science, Penerbit Universiti Sains Malaysia, 22: 1 (2011) 25-37.

Google Scholar

[7] M.P. Ferraz, F.J. Monteiro, M. Manuel, Hydroxyapatite nanoparticles: A review of preparation methodologies, Journal of Applied Biomaterials & Biomechanics 2004; 2: 74-78.

Google Scholar

[8] S. Hamzah, N. Ali, M.M. Ariffin, A.W. Mohamad, N. Othman, Adsorption of trypsin onto chitosan/psf affinity membranes: Effects of physio-chemical environment, J. Teknologi Sci. and Eng. 74: 7 (2015) 1-6.

DOI: 10.11113/jt.v74.4686

Google Scholar

[9] S. Hamzah, N. Ali, A.W. Mohamad, M.M. Ariffin, A. Ali, Design of chitosan/PSf self-assembly membrane to mitigate fouling and enhance performance in trypsin separation, J. Chem. Tech. Biotechnol. 3740 (2012) 1157 - 1160.

DOI: 10.1002/jctb.3740

Google Scholar

[10] M.S. Shojai, M.T. Khorasani, E.D. Khoshdargi and A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomaterialia. 9 (2013) 7591-7621.

DOI: 10.1016/j.actbio.2013.04.012

Google Scholar

[11] B.N. Tabrizi, A. Fahami, and R. E. Kahrizsangi, A comparative study of hydroxyapatite nanostructures produced under different milling conditions and thermal treatment of bovine bone, Journal of Industrial and Engineering Chemistry. 20 (2014).

DOI: 10.1016/j.jiec.2013.03.041

Google Scholar

[12] M.L. Luo, J.Q. Zhao, W. Tang and C.S. Pu, Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self assembly of TiO2 nanoparticles, Applied Surface Science. 249 (2005) 76-48.

DOI: 10.1016/j.apsusc.2004.11.054

Google Scholar

[13] S.S. Saravanabhavan and S. Dharmalingam, Fabrication of polysulphone/hydroxyapatite nanofiber composite implant and evaluation of their in vitro bioactivity and biocompatibility towards the post-surgical therapy of gastric cancer, Chemical Engineering Journal. 234 (2013).

DOI: 10.1016/j.cej.2013.08.076

Google Scholar

[14] S.K. Loghmani, M.F. Rad and T. Shahrabi, Effect of polyethyleneglycol on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol, Ceramics International, 39 (2013) 7043-7051.

DOI: 10.1016/j.ceramint.2013.02.043

Google Scholar

[15] C.P. Dhanalakshmi, L. Vijayalakshmi and V. Narayanan, Synthesis and preliminary characterization of polyethylene glycol (PEG)/hydroxyapatite (HAp) nanocomposite for biomedical applications, International Journal of Physical Sciences. 7: 13 (2012).

DOI: 10.5897/ijps11.1495

Google Scholar

[16] K. Narsiah and Agarwal, Transmission analysis in ultfiltration of ternary rotien mixture through a hydrophilic membrane. Journal of Membrane Science. 287 (2007) 9-18.

DOI: 10.1016/j.memsci.2006.10.001

Google Scholar

[17] Arthanareeswaran, G. and Mohan, M. Rajajenthiren, Preparation and performance of poly sulfonated poly (ether ketone) blend ultrafiltration membranes. (Part 1), Application Surface Science. 235 (2009) 8705-8712.

DOI: 10.1016/j.apsusc.2007.04.053

Google Scholar

[18] S. Ferdous, M.A. Ioannidis and, D.E. Henneke, Effects of temperature, pH, and ionic strength on the adsorption of nanoparticles at liquid–liquid interfaces, J. Nanopart Res. 14: 850 (2012) 1-12.

DOI: 10.1007/s11051-012-0850-4

Google Scholar

[19] N.A. Medellin-Castillo, R.L. Ramos, E.P. Ortega, R.O. Perez, J.V.F. Cano, and M.S.B. Mendoza, Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions, Journal of Industrial and Engineering Chemistry. 20: 6 (2014).

DOI: 10.1016/j.jiec.2013.12.105

Google Scholar