Multi Band Gap Cu(In,Ga)(S,Se)2 Thin Films Deposited by Spray Pyrolysis for High Performance Solar Cell Devices

Article Preview

Abstract:

The performance of copper indium gallium disulfoselenide (CIGSSe) solar cells strongly depends on the band bap of absorbing layer of CIGSSe. The device performance can be improved by fabricating multi band gap layer of CIGSSe. However, the fabrication of multi band gap CIGSSe using non-vacuum techniques is challenging. In this study, we fabricated solar cell devices which consisted of multi band gap Cu (In,Ga)(S,Se)2 thin films. The CIGS thin films were prepared by the spray-pyrolysis of aqueous precursor solutions of gallium (gallium chloride; GaCl3), copper (indium chloride; CuCl2), indium (indium chloride; InCl3), and Sulphur (thiourea; (SC(NH2)2) sources on Mo-coated glass substrate. The as-sprayed thin films were then selenized at 500 °C for 10 minutes.After selenization, CIGS films were transformed to Cu (In,Ga)(S,Se)2 (CIGSSe). The CIGS films with different composition were deposited again on top of selenized CIGSSe films and selenization process was repeated, hence multi band gap CIGSSe films were fabricated. The Chemical bath deposition (CBD) process was used to deposit cadmium sulphide (CdS) buffer layer. The solar cell fabricated with the device configuration of glass/Mo/CIGSSe/CdS/i-ZnO/AZO showed a power conversion efficiency of 6.51%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhou, C. -J. Hsu, W. -C. Hsu, H. -S. Duan, C. -H. Chung, W. Yang, et al., Non-Hydrazine Solutions in Processing CuIn(S, Se)2 Photovoltaic Devices from Hydrazinium Precursors, Advanced Energy Materials, vol. 3, pp.328-336, (2013).

DOI: 10.1002/aenm.201200691

Google Scholar

[2] B. Bob, B. Lei, C. -H. Chung, W. Yang, W. -C. Hsu, H. -S. Duan, et al., The Development of Hydrazine-Processed Cu(In, Ga)(Se, S)2 Solar Cells, Advanced Energy Materials, vol. 2, pp.504-522, (2012).

DOI: 10.1002/aenm.201100578

Google Scholar

[3] N. G. Dhere, Toward GW/year of CIGS production within the next decade, Solar Energy Materials and Solar Cells, vol. 91, pp.1376-1382, 9/22/ (2007).

DOI: 10.1016/j.solmat.2007.04.003

Google Scholar

[4] X. -J. Wu, X. Huang, X. Qi, H. Li, B. Li, and H. Zhang, Copper-Based Ternary and Quaternary Semiconductor Nanoplates: Templated Synthesis, Characterization, and Photoelectrochemical Properties, Angewandte Chemie International Edition, vol. 53, pp.8929-8933, (2014).

DOI: 10.1002/anie.201403655

Google Scholar

[5] Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, et al., Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells, Nano Letters, vol. 8, pp.2982-2987, 2008/09/10 (2008).

DOI: 10.1021/nl802042g

Google Scholar

[6] Q. Guo, G. M. Ford, H. W. Hillhouse, and R. Agrawal, Sulfide Nanocrystal Inks for Dense Cu(In1−xGax)(S1−ySey)2 Absorber Films and Their Photovoltaic Performance, Nano Letters, vol. 9, pp.3060-3065, 2009/08/12 (2009).

DOI: 10.1021/nl901538w

Google Scholar

[7] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, et al., Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21. 7%, physica status solidi (RRL) – Rapid Research Letters, vol. 9, pp.28-31, (2015).

DOI: 10.1002/pssr.201409520

Google Scholar

[8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 46), Progress in Photovoltaics: Research and Applications, vol. 23, pp.805-812, (2015).

DOI: 10.1002/pip.2637

Google Scholar

[9] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, et al., Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells, Nat Mater, vol. 12, pp.1107-1111, 12/print (2013).

DOI: 10.1038/nmat3789

Google Scholar

[10] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, et al., 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor, Progress in Photovoltaics: Research and Applications, vol. 16, pp.235-239, (2008).

DOI: 10.1002/pip.822

Google Scholar

[11] M. A. Hossain, Z. Tianliang, L. K. Keat, L. Xianglin, R. R. Prabhakar, S. K. Batabyal, et al., Synthesis of Cu(In, Ga)(S, Se)2 thin films using an aqueous spray-pyrolysis approach, and their solar cell efficiency of 10. 5%, Journal of Materials Chemistry A, vol. 3, pp.4147-4154, (2015).

DOI: 10.1039/c4ta05783j

Google Scholar

[12] Y. Cai, J. C. W. Ho, S. K. Batabyal, W. Liu, Y. Sun, S. G. Mhaisalkar, et al., Nanoparticle-Induced Grain Growth of Carbon-Free Solution-Processed CuIn(S, Se)2 Solar Cell with 6% Efficiency, ACS Applied Materials & Interfaces, vol. 5, pp.1533-1537, 2013/03/13 (2013).

DOI: 10.1021/am303057z

Google Scholar

[13] W. Wang, S. -Y. Han, S. -J. Sung, D. -H. Kim, and C. -H. Chang, 8. 01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks, Physical Chemistry Chemical Physics, vol. 14, pp.11154-11159, (2012).

DOI: 10.1039/c2cp41969f

Google Scholar

[14] W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, 12% Efficiency CuIn(Se, S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process, Chemistry of Materials, vol. 22, pp.1010-1014, 2010/02/09 (2010).

DOI: 10.1021/cm901950q

Google Scholar

[15] V. A. Akhavan, T. B. Harvey, C. J. Stolle, D. P. Ostrowski, M. S. Glaz, B. W. Goodfellow, et al., Influence of Composition on the Performance of Sintered Cu(In, Ga)Se2 Nanocrystal Thin-Film Photovoltaic Devices, ChemSusChem, vol. 6, pp.481-486, (2013).

DOI: 10.1002/cssc.201200677

Google Scholar

[16] S. Ahn, K. Kim, A. Cho, J. Gwak, J. H. Yun, K. Shin, et al., CuInSe2 (CIS) Thin Films Prepared from Amorphous Cu–In–Se Nanoparticle Precursors for Solar Cell Application, ACS Applied Materials & Interfaces, vol. 4, pp.1530-1536, 2012/03/28 (2012).

DOI: 10.1021/am201755q

Google Scholar

[17] J. C. W. Ho, T. Zhang, K. K. Lee, S. K. Batabyal, A. I. Y. Tok, and L. H. Wong, Spray Pyrolysis of CuIn(S, Se)2 Solar Cells with 5. 9% Efficiency: A Method to Prevent Mo Oxidation in Ambient Atmosphere, ACS Applied Materials & Interfaces, vol. 6, pp.6638-6643, 2014/05/14 (2014).

DOI: 10.1021/am500317m

Google Scholar

[18] S. J. Park, J. W. Cho, J. K. Lee, K. Shin, J. -H. Kim, and B. K. Min, Solution processed high band-gap CuInGaS2 thin film for solar cell applications, Progress in Photovoltaics: Research and Applications, vol. 22, pp.122-128, (2014).

DOI: 10.1002/pip.2354

Google Scholar

[19] T. K. Todorov, O. Gunawan, T. Gokmen, and D. B. Mitzi, Solution-processed Cu(In, Ga)(S, Se)2 absorber yielding a 15. 2% efficient solar cell, Progress in Photovoltaics: Research and Applications, vol. 21, pp.82-87, (2013).

DOI: 10.1002/pip.1253

Google Scholar

[20] I. M. Dharmadasa, J. S. Roberts, and G. Hill, Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: Experimental results, Solar Energy Materials and Solar Cells, vol. 88, pp.413-422, 9/15/ (2005).

DOI: 10.1016/j.solmat.2005.05.008

Google Scholar

[21] S. H. Wei and A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys, Journal of Applied Physics, vol. 78, pp.3846-3856, (1995).

DOI: 10.1063/1.359901

Google Scholar

[22] K. Zhang, C. -l. Yang, L. Yin, Z. Liu, Q. -m. Song, H. -l. Luo, et al., Fabricating highly efficient Cu(In, Ga)Se2 solar cells at low glass-substrate temperature by active gallium grading control, Solar Energy Materials and Solar Cells, vol. 120, Part A, pp.253-258, 1/ (2014).

DOI: 10.1016/j.solmat.2013.09.012

Google Scholar

[23] A. Han, Y. Sun, Y. Zhang, X. Liu, F. Meng, and Z. Liu, Comparative study of the role of Ga in CIGS solar cells with different thickness, Thin Solid Films, vol. 598, pp.189-194, 1/1/ (2016).

DOI: 10.1016/j.tsf.2015.12.020

Google Scholar