[1]
J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu , et al., Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes, Ultrasound Sonochemistry 18 (2011).
DOI: 10.1016/j.ultsonch.2010.05.002
Google Scholar
[2]
Z. D. Meng and W. C. Oh, Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/TiO2 composite with different ultrasonic intensity, Ultrasound Sonochemistry 18 (2011) 757-764.
DOI: 10.1016/j.ultsonch.2010.10.008
Google Scholar
[3]
K. Zhang, F. J. Zhang, M. L. Chen, and W. C. Oh, Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts Ultrasound Sonochemistry 18 (2011) 765-772.
DOI: 10.1016/j.ultsonch.2010.11.008
Google Scholar
[4]
E. D. Sherly, J. Judith Vijaya, and L. John Kennedy, Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol, Chinese Journal of Catalyst 36 (2015) 1263-1272.
DOI: 10.1016/s1872-2067(15)60886-5
Google Scholar
[5]
J. Gajendiran and V. Rajendran, Synthesis and characterization of coupled semiconductor metal oxide (ZnO/CuO) nanocomposite, Materials Letters 116 (2014) 311-313.
DOI: 10.1016/j.matlet.2013.11.063
Google Scholar
[6]
C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited, Applied Catalysis A: General 304 (2006) 55-61.
DOI: 10.1016/j.apcata.2006.02.020
Google Scholar
[7]
Z. L. Liu, J. C. Deng, J. J. Deng, and F. F. Li, Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method, Materials Science and Engineering B 150 (2008) 99-104.
DOI: 10.1016/j.mseb.2008.04.002
Google Scholar
[8]
K. Mageshwari, D. Nataraj, T. Pal, R. Sathyamoorthy, and J. Park, Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method, Journal of Alloys and Compounds 625 (2015) 362–370.
DOI: 10.1016/j.jallcom.2014.11.109
Google Scholar
[9]
R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Materials Science and Engineering C 33 (2013).
DOI: 10.1016/j.msec.2012.08.011
Google Scholar
[10]
B. N. Joshi, H. Yoon, S. H. Na, J. Y. Choi, and S. S. Yoon, Enhanced photocatalytic performance of graphene–ZnO nanoplatelet composite thin films prepared by electrostatic spray deposition, Ceramics International 40 (2014) 3647-3654.
DOI: 10.1016/j.ceramint.2013.09.060
Google Scholar
[11]
S. Rabieh, K. Nassimi, and M. Bagheri, Synthesis of hierarchical ZnO–reduced graphene oxide nanocomposites with enhanced adsorption–photocatalytic performance, Materials Letters 162 (2016) 28-31.
DOI: 10.1016/j.matlet.2015.09.111
Google Scholar
[12]
H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, et al., Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation, Advances in Colloid and Interface Science 195-196 (2013).
DOI: 10.1016/j.cis.2013.03.009
Google Scholar
[13]
A. Taufik, I. K. Susanto, and R. Saleh, Preparation, characterization and photocatalytic activity of multifunctional Fe3O4/ZnO/CuO hybrid nanoparticles, Materials Research Forum 1123 (2015) 227-232.
DOI: 10.4028/www.scientific.net/msf.827.37
Google Scholar
[14]
F. Zhao, B. Dong, R. Gao, G. Su, W. Liu, L. Shi, et al., A three-dimensional graphene-TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation, Applied Surface Science 351 (2015) 303-308.
DOI: 10.1016/j.apsusc.2015.05.121
Google Scholar
[15]
T. Chang, Z. Li, G. Yun, Y. Jia, and H. Yang, Enhanced Photocatalytic Activity of ZnO/CuO Nanocomposites Synthesized by Hydrothermal Method, Nano-Micro Lett. 5(3) (2013) 163-168.
DOI: 10.1007/bf03353746
Google Scholar
[16]
J. C. Colmenares, R. Luque, J. M. Campelo, F. Colmenares, Z. Karpiński, and A. A. Romero, Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview, Materials 2 (2009).
DOI: 10.3390/ma2042228
Google Scholar
[17]
M. W. Shah, Y. Zhu, X. Fan, J. Zhao, Y. Li, S. Asim, et al., Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis, Scientific Reports 5: 15804 (2015).
DOI: 10.1038/srep15804
Google Scholar
[18]
X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, et al., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods, Scientific Reports 4 : 4596 (2014).
DOI: 10.1038/srep04596
Google Scholar
[19]
R. Y. Hong, S. Z. Zhang, G. Q. Di, H. Z. Li, Y. Zheng, J. Ding, et al., Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Materials Research Bulletin 43 (2008) 2457-2468.
DOI: 10.1016/j.materresbull.2007.07.035
Google Scholar
[20]
A. Hamrouni, H. Lachheb, and A. Houas, Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites, Materials Science and Engineering B 178 (2013) 1371-1379.
DOI: 10.1016/j.mseb.2013.08.008
Google Scholar
[21]
P. Sathishkumar, R. Sweena, J. J. Wu, and S. Anandan, Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chemical Engineering Journal 171 (2011) 136–140.
DOI: 10.1016/j.cej.2011.03.074
Google Scholar