Investigation of ZnO/CuO/Nanographene Platelets Composites Catalyst for the Degradation of Methylene Blue from Aqueous Solution

Article Preview

Abstract:

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu , et al., Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes, Ultrasound Sonochemistry 18 (2011).

DOI: 10.1016/j.ultsonch.2010.05.002

Google Scholar

[2] Z. D. Meng and W. C. Oh, Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/TiO2 composite with different ultrasonic intensity, Ultrasound Sonochemistry 18 (2011) 757-764.

DOI: 10.1016/j.ultsonch.2010.10.008

Google Scholar

[3] K. Zhang, F. J. Zhang, M. L. Chen, and W. C. Oh, Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts Ultrasound Sonochemistry 18 (2011) 765-772.

DOI: 10.1016/j.ultsonch.2010.11.008

Google Scholar

[4] E. D. Sherly, J. Judith Vijaya, and L. John Kennedy, Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol, Chinese Journal of Catalyst 36 (2015) 1263-1272.

DOI: 10.1016/s1872-2067(15)60886-5

Google Scholar

[5] J. Gajendiran and V. Rajendran, Synthesis and characterization of coupled semiconductor metal oxide (ZnO/CuO) nanocomposite, Materials Letters 116 (2014) 311-313.

DOI: 10.1016/j.matlet.2013.11.063

Google Scholar

[6] C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited, Applied Catalysis A: General 304 (2006) 55-61.

DOI: 10.1016/j.apcata.2006.02.020

Google Scholar

[7] Z. L. Liu, J. C. Deng, J. J. Deng, and F. F. Li, Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method, Materials Science and Engineering B 150 (2008) 99-104.

DOI: 10.1016/j.mseb.2008.04.002

Google Scholar

[8] K. Mageshwari, D. Nataraj, T. Pal, R. Sathyamoorthy, and J. Park, Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method, Journal of Alloys and Compounds 625 (2015) 362–370.

DOI: 10.1016/j.jallcom.2014.11.109

Google Scholar

[9] R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Materials Science and Engineering C 33 (2013).

DOI: 10.1016/j.msec.2012.08.011

Google Scholar

[10] B. N. Joshi, H. Yoon, S. H. Na, J. Y. Choi, and S. S. Yoon, Enhanced photocatalytic performance of graphene–ZnO nanoplatelet composite thin films prepared by electrostatic spray deposition, Ceramics International 40 (2014) 3647-3654.

DOI: 10.1016/j.ceramint.2013.09.060

Google Scholar

[11] S. Rabieh, K. Nassimi, and M. Bagheri, Synthesis of hierarchical ZnO–reduced graphene oxide nanocomposites with enhanced adsorption–photocatalytic performance, Materials Letters 162 (2016) 28-31.

DOI: 10.1016/j.matlet.2015.09.111

Google Scholar

[12] H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, et al., Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation, Advances in Colloid and Interface Science 195-196 (2013).

DOI: 10.1016/j.cis.2013.03.009

Google Scholar

[13] A. Taufik, I. K. Susanto, and R. Saleh, Preparation, characterization and photocatalytic activity of multifunctional Fe3O4/ZnO/CuO hybrid nanoparticles, Materials Research Forum 1123 (2015) 227-232.

DOI: 10.4028/www.scientific.net/msf.827.37

Google Scholar

[14] F. Zhao, B. Dong, R. Gao, G. Su, W. Liu, L. Shi, et al., A three-dimensional graphene-TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation, Applied Surface Science 351 (2015) 303-308.

DOI: 10.1016/j.apsusc.2015.05.121

Google Scholar

[15] T. Chang, Z. Li, G. Yun, Y. Jia, and H. Yang, Enhanced Photocatalytic Activity of ZnO/CuO Nanocomposites Synthesized by Hydrothermal Method, Nano-Micro Lett. 5(3) (2013) 163-168.

DOI: 10.1007/bf03353746

Google Scholar

[16] J. C. Colmenares, R. Luque, J. M. Campelo, F. Colmenares, Z. Karpiński, and A. A. Romero, Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview, Materials 2 (2009).

DOI: 10.3390/ma2042228

Google Scholar

[17] M. W. Shah, Y. Zhu, X. Fan, J. Zhao, Y. Li, S. Asim, et al., Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis, Scientific Reports 5: 15804 (2015).

DOI: 10.1038/srep15804

Google Scholar

[18] X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, et al., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods, Scientific Reports 4 : 4596 (2014).

DOI: 10.1038/srep04596

Google Scholar

[19] R. Y. Hong, S. Z. Zhang, G. Q. Di, H. Z. Li, Y. Zheng, J. Ding, et al., Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Materials Research Bulletin 43 (2008) 2457-2468.

DOI: 10.1016/j.materresbull.2007.07.035

Google Scholar

[20] A. Hamrouni, H. Lachheb, and A. Houas, Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites, Materials Science and Engineering B 178 (2013) 1371-1379.

DOI: 10.1016/j.mseb.2013.08.008

Google Scholar

[21] P. Sathishkumar, R. Sweena, J. J. Wu, and S. Anandan, Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chemical Engineering Journal 171 (2011) 136–140.

DOI: 10.1016/j.cej.2011.03.074

Google Scholar