[1]
X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang and D. Yang, Adsorption– photodegradation synergetic removal of methylene blue from aqueous solution by NiO/graphene oxide nanocomposite, Powder Technology, vol. 275, p.322–328, (2015).
DOI: 10.1016/j.powtec.2015.01.079
Google Scholar
[2]
T. Farhana, M. Mollah, M. Susan and M. Islam, Catalytic Degradation of an Organic Dye through Electroreduction of Dioxygen in Aqueous Solution, Electrochimica Acta, vol. 139, p.244–249, (2014).
DOI: 10.1016/j.electacta.2014.06.145
Google Scholar
[3]
A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, vol. 31, p.145–157, (2001).
DOI: 10.1016/s0926-3373(00)00276-9
Google Scholar
[4]
Y. Liu, H. Yu, Z. Lv, S. Zhan, J. Yang, X. Peng, Y. Ren and X. Wu, Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2 nanostructured fibers, Journal of Environmental Sciences, vol. 24, p.1867–1875, (2012).
DOI: 10.1016/s1001-0742(11)61008-5
Google Scholar
[5]
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol. 238, pp.37-38, (1972).
DOI: 10.1038/238037a0
Google Scholar
[6]
M. Misono, Recent progress in the practical applications of heteropoly acid and perovskite catalysts: Catalytic technology for the sustainable society, Catalysis Today, vol. 144, p.285–291, (2009).
DOI: 10.1016/j.cattod.2008.10.054
Google Scholar
[7]
M. Li, Z. Hong, Y. Fang and F. Huang, Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide, Materials Research Bulletin, vol. 43, p.2179–2186, (2008).
DOI: 10.1016/j.materresbull.2007.08.030
Google Scholar
[8]
S. Bae, S. Ji, S. Hong, J. Jang and J. Lee, Photocatalytic overall water splitting with dual-bed system under visible light irradiation, International Journal of Hydrogen Energy, vol. 34, p.3243–3249, (2009).
DOI: 10.1016/j.ijhydene.2009.02.022
Google Scholar
[9]
B. Hu, C. Wu, Z. Zhang and L. Wang, Sonophotocatalytic degradation of trichloroacetic acid in aqueous solution, Ceramics International, vol. 40, p.7015– 7021, (2014).
DOI: 10.1016/j.ceramint.2013.12.029
Google Scholar
[10]
D. Bremner, A. Burgess and R. Chand, The chemistry of ultrasonic degradation of organic compounds, Current Organic Chemistry, vol. 15, p.168–177, (2011).
DOI: 10.2174/138527211793979862
Google Scholar
[11]
M. Jagannathana, F. Grieserb and M. Ashokkumarb, Sonophotocatalytic degradation of paracetamol using TiO2 and Fe3+, Separation and Purification Technology, vol. 103, p.114–118, (2013).
DOI: 10.1016/j.seppur.2012.10.003
Google Scholar
[12]
N. Talebian, M. R. Nilforoushan and F. J. Mogaddas, Comparative study on the sonophotocatalytic degradation of hazardous waste, Ceramics International, vol. 39, p.4913–4921, (2013).
DOI: 10.1016/j.ceramint.2012.11.085
Google Scholar
[13]
K. Suslick, Ultrasound: its chemical, physical and biological effects, New York: VCH, (1988).
Google Scholar
[14]
A. Taufik, I. Kalim and R. Saleh, Preparation, Characterization and Photocatalytic Activity of Multifunctional Fe3O4/ZnO/CuO Hybrid Nanoparticles, Materials Science Forum, vol. 827, pp.37-42, (2015).
DOI: 10.4028/www.scientific.net/msf.827.37
Google Scholar
[15]
A. Galal, N. F. Atta and S. M. Ali, Investigation of the catalytic activity of LaBO3 (B = Ni, Co, Fe or Mn) prepared by the microwave-assisted method for hydrogen evolution in acidic medium, Electrochimica Acta, vol. 56, p.5722–5730, (2011).
DOI: 10.1016/j.electacta.2011.04.045
Google Scholar
[16]
C. Zhang, Y. Guo, Y. Guo, G. Lu, A. Boreave , L. Retailleau, A. Baylet and A. Giroir-Fendler, LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene, Applied Catalysis B: Environmental, vol. 148–149, p.490–498, (2014).
DOI: 10.1016/j.apcatb.2013.11.030
Google Scholar
[17]
X. Zhang, A. Zhang, W. Xie, J. Lin and X. Wu, Effect of strain-modulated lattice distortion on the magnetic properties of LaMnO3 films, Physica B, vol. 476, p.114–117, (2015).
DOI: 10.1016/j.physb.2015.04.038
Google Scholar
[18]
M. Popa, L. V. Hong and M. Kakihana, Particle morphology characterization and magnetic properties of LaMnO3+ d perovskites, Physica B, vol. 327 , p.237 – 240, (2003).
DOI: 10.1016/s0921-4526(02)01737-4
Google Scholar
[19]
A. Boukhachem, A. Ziouche, M. B. Amor, O. Kamoun, M. Zergoug, H. Maghraoui-Meherzic, A. Yumak, K. Boubakera and M. Amlouk, Physical investigations on perovskite LaMnO3- d sprayed thin films for spintronic applications, Materials Research Bulletin, vol. 74, p.202–211, (2016).
DOI: 10.1016/j.materresbull.2015.10.003
Google Scholar
[20]
T. Phan, R. Vincent, M. Phan, N. Dan and S. Yu, Spin dynamics in annealed Mn-doped ZnO ceramic materials, Solid State Communications, vol. 144, p.134–137, (2007).
DOI: 10.1016/j.ssc.2007.08.006
Google Scholar
[21]
S. Gong and B.G. Liu, Electronic energy gaps and optical properties of LaMnO3, Physics Letters A, vol. 375, p.1477–1480, (2011).
DOI: 10.1016/j.physleta.2011.02.027
Google Scholar
[22]
P. Sathishkumar, R. V. Mangalaraja and S. Anandan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renewable and Sustainable Energy Reviews, vol. 55 , p.426–454, (2016).
DOI: 10.1016/j.rser.2015.10.139
Google Scholar
[23]
D. R. Reddy, G. K. Dinesh, S. Anandan and T. Sivasankar, Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2, Chemical Engineering and Processing, vol. 99, p.10–18, (2016).
DOI: 10.1016/j.cep.2015.10.019
Google Scholar
[24]
P. Gogate and A. Pandit, Sonophotocatalytic reactors for wastewater treatment: a critical review, AIChE Journal, vol. 50, p.1051–1079, (2004).
DOI: 10.1002/aic.10079
Google Scholar