Removal of Methylene Blue Dye Contaminant by Combination of Ultrasonic and Visible Light Irradiation Using Perovskite LaMnO3 Nanocatalyst

Article Preview

Abstract:

The applicability of LaMnO3 perovskite as nanocatalyst was investigated for removing of methylene blue as a model compound of organic pollutant under visible light and ultrasonic irradiation simultaneously. The LaMnO3 perovskite was synthesized by co-precipitation method and it was characterized in terms of morphological, structural, compositional, optical and magnetic properties. The detailed characterization confirmed that LaMnO3 perovskite had a single-phase orthorhombic structure with estimated crystallite size of 44 nm. UV-vis diffuse reflectance spectra showed a weak reflection with small band gap energy. The weak ferromagnetic behavior with a saturation magnetization of 3 emu/g was obtained at 1 Tesla. The photosonocatalytic showed significantly higher catalytic activity in decomposing methylene blue compared to that of sonocatalytic or photocatalytic alone. Radical scavenger experiments revealed that holes were the predominant oxidative species involved in the process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-105

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang and D. Yang, Adsorption– photodegradation synergetic removal of methylene blue from aqueous solution by NiO/graphene oxide nanocomposite, Powder Technology, vol. 275, p.322–328, (2015).

DOI: 10.1016/j.powtec.2015.01.079

Google Scholar

[2] T. Farhana, M. Mollah, M. Susan and M. Islam, Catalytic Degradation of an Organic Dye through Electroreduction of Dioxygen in Aqueous Solution, Electrochimica Acta, vol. 139, p.244–249, (2014).

DOI: 10.1016/j.electacta.2014.06.145

Google Scholar

[3] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, vol. 31, p.145–157, (2001).

DOI: 10.1016/s0926-3373(00)00276-9

Google Scholar

[4] Y. Liu, H. Yu, Z. Lv, S. Zhan, J. Yang, X. Peng, Y. Ren and X. Wu, Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2 nanostructured fibers, Journal of Environmental Sciences, vol. 24, p.1867–1875, (2012).

DOI: 10.1016/s1001-0742(11)61008-5

Google Scholar

[5] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol. 238, pp.37-38, (1972).

DOI: 10.1038/238037a0

Google Scholar

[6] M. Misono, Recent progress in the practical applications of heteropoly acid and perovskite catalysts: Catalytic technology for the sustainable society, Catalysis Today, vol. 144, p.285–291, (2009).

DOI: 10.1016/j.cattod.2008.10.054

Google Scholar

[7] M. Li, Z. Hong, Y. Fang and F. Huang, Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide, Materials Research Bulletin, vol. 43, p.2179–2186, (2008).

DOI: 10.1016/j.materresbull.2007.08.030

Google Scholar

[8] S. Bae, S. Ji, S. Hong, J. Jang and J. Lee, Photocatalytic overall water splitting with dual-bed system under visible light irradiation, International Journal of Hydrogen Energy, vol. 34, p.3243–3249, (2009).

DOI: 10.1016/j.ijhydene.2009.02.022

Google Scholar

[9] B. Hu, C. Wu, Z. Zhang and L. Wang, Sonophotocatalytic degradation of trichloroacetic acid in aqueous solution, Ceramics International, vol. 40, p.7015– 7021, (2014).

DOI: 10.1016/j.ceramint.2013.12.029

Google Scholar

[10] D. Bremner, A. Burgess and R. Chand, The chemistry of ultrasonic degradation of organic compounds, Current Organic Chemistry, vol. 15, p.168–177, (2011).

DOI: 10.2174/138527211793979862

Google Scholar

[11] M. Jagannathana, F. Grieserb and M. Ashokkumarb, Sonophotocatalytic degradation of paracetamol using TiO2 and Fe3+, Separation and Purification Technology, vol. 103, p.114–118, (2013).

DOI: 10.1016/j.seppur.2012.10.003

Google Scholar

[12] N. Talebian, M. R. Nilforoushan and F. J. Mogaddas, Comparative study on the sonophotocatalytic degradation of hazardous waste, Ceramics International, vol. 39, p.4913–4921, (2013).

DOI: 10.1016/j.ceramint.2012.11.085

Google Scholar

[13] K. Suslick, Ultrasound: its chemical, physical and biological effects, New York: VCH, (1988).

Google Scholar

[14] A. Taufik, I. Kalim and R. Saleh, Preparation, Characterization and Photocatalytic Activity of Multifunctional Fe3O4/ZnO/CuO Hybrid Nanoparticles, Materials Science Forum, vol. 827, pp.37-42, (2015).

DOI: 10.4028/www.scientific.net/msf.827.37

Google Scholar

[15] A. Galal, N. F. Atta and S. M. Ali, Investigation of the catalytic activity of LaBO3 (B = Ni, Co, Fe or Mn) prepared by the microwave-assisted method for hydrogen evolution in acidic medium, Electrochimica Acta, vol. 56, p.5722–5730, (2011).

DOI: 10.1016/j.electacta.2011.04.045

Google Scholar

[16] C. Zhang, Y. Guo, Y. Guo, G. Lu, A. Boreave , L. Retailleau, A. Baylet and A. Giroir-Fendler, LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene, Applied Catalysis B: Environmental, vol. 148–149, p.490–498, (2014).

DOI: 10.1016/j.apcatb.2013.11.030

Google Scholar

[17] X. Zhang, A. Zhang, W. Xie, J. Lin and X. Wu, Effect of strain-modulated lattice distortion on the magnetic properties of LaMnO3 films, Physica B, vol. 476, p.114–117, (2015).

DOI: 10.1016/j.physb.2015.04.038

Google Scholar

[18] M. Popa, L. V. Hong and M. Kakihana, Particle morphology characterization and magnetic properties of LaMnO3+ d perovskites, Physica B, vol. 327 , p.237 – 240, (2003).

DOI: 10.1016/s0921-4526(02)01737-4

Google Scholar

[19] A. Boukhachem, A. Ziouche, M. B. Amor, O. Kamoun, M. Zergoug, H. Maghraoui-Meherzic, A. Yumak, K. Boubakera and M. Amlouk, Physical investigations on perovskite LaMnO3- d sprayed thin films for spintronic applications, Materials Research Bulletin, vol. 74, p.202–211, (2016).

DOI: 10.1016/j.materresbull.2015.10.003

Google Scholar

[20] T. Phan, R. Vincent, M. Phan, N. Dan and S. Yu, Spin dynamics in annealed Mn-doped ZnO ceramic materials, Solid State Communications, vol. 144, p.134–137, (2007).

DOI: 10.1016/j.ssc.2007.08.006

Google Scholar

[21] S. Gong and B.G. Liu, Electronic energy gaps and optical properties of LaMnO3, Physics Letters A, vol. 375, p.1477–1480, (2011).

DOI: 10.1016/j.physleta.2011.02.027

Google Scholar

[22] P. Sathishkumar, R. V. Mangalaraja and S. Anandan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renewable and Sustainable Energy Reviews, vol. 55 , p.426–454, (2016).

DOI: 10.1016/j.rser.2015.10.139

Google Scholar

[23] D. R. Reddy, G. K. Dinesh, S. Anandan and T. Sivasankar, Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2, Chemical Engineering and Processing, vol. 99, p.10–18, (2016).

DOI: 10.1016/j.cep.2015.10.019

Google Scholar

[24] P. Gogate and A. Pandit, Sonophotocatalytic reactors for wastewater treatment: a critical review, AIChE Journal, vol. 50, p.1051–1079, (2004).

DOI: 10.1002/aic.10079

Google Scholar