High Performance of Rutile Titanium Dioxide Whiskers/Epoxy Resin Composites

Article Preview

Abstract:

Rutile TiO2 whisker/epoxy resin composites were prepared by hot-pressing process method. The effects of different content of TiO2 whiskers on the microstructure, microwave dielectric properties and flexural strength for TiO2/epoxy resin composites were investigated. Results show that flexural strength increased firstly, which can reach the maximum value (105.53 Mpa), then decreased with the content of TiO2 whisker (v%) increase. Moreover, the dielectric constant and dielectric loss of the TiO2/epoxy resin composites increase with the increased of TiO2 whisker (v%). When the content of TiO2 whisker is 60 v%, the TiO2 whisker/epoxy resin composites exhibit a higher permittivity (εr = 10.74) and relatively low dielectric loss (tanθ= 0.021).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-97

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Teshima K, Yubuta K, Shimodaira T, et al. Environmentally Friendly Growth of Highly Crystalline Photocatalytic Na2Ti6O13 Whiskers from a NaCl Flux[J]. Crystal Growth & Design, 2008, 8(2): 465-469.

DOI: 10.1021/cg070341p

Google Scholar

[2] Matt L, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. [J]. Nature Materials, 2005, 4(6): 455-459.

Google Scholar

[3] Khoddamzadeh A, Liu R, Wu X. Novel polytetrafluoroethylene (PTFE) composites with newly developed Tribaloy alloy additive for sliding bearings[J]. Wear, 2009, 266(s 7–8): 646-657.

DOI: 10.1016/j.wear.2008.08.007

Google Scholar

[4] Wang H, Zhu Y, Feng X, et al. The effect of self-assembly modified potassium titanate whiskers on the friction and wear behaviors of PEEK composites[J]. Wear, 2010, 269(s 1–2): 139-144.

DOI: 10.1016/j.wear.2010.03.018

Google Scholar

[5] Jain S K, Gupta R, Chandra S. Evaluation of acoustical characteristics of ultrasonic transducer backing materials at high hydrostatic pressures[J]. Ultrasonics, 1998, 36(36): 37-40.

DOI: 10.1016/s0041-624x(97)00153-4

Google Scholar

[6] El-Tantawy F, Kamada K, Ohnabe H. In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications[J]. Materials Letters, 2002, 56(s 1–2): 112-126.

DOI: 10.1016/s0167-577x(02)00401-9

Google Scholar

[7] Farid E, Kamada K, Ohnabe H. A novel way of enhancing the electrical and thermal stability of conductive epoxy resin–carbon black composites via the Joule heating effect for heating-element applications[J]. Journal of Applied Polymer Science, 2002, 87(2): 97-109.

DOI: 10.1002/app.10851

Google Scholar

[8] Ng C B, Schadler L S, Siegel R W. Synthesis and mechanical properties of TiO 2 -epoxy nanocomposites[J]. Nanostructured Materials, 1999, 12(s 1–4): 507-510.

DOI: 10.1016/s0965-9773(99)00170-1

Google Scholar

[9] Hussain M, Oku Y, Nakahira A, et al. Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites[J]. Materials Letters, 1996, 26(3): 177-184.

DOI: 10.1016/0167-577x(95)00223-5

Google Scholar

[10] Kalantar J, Drzal L T. The bonding mechanism of aramid fibres to epoxy matrices - Part 1 A review of the literature[J]. Journal of Materials Science, 1990, 25(10): 4186-4193.

DOI: 10.1007/bf00581071

Google Scholar

[11] Xiong Z X, Introduction to materials physics, second ed., Science press. Beijing, (2007).

Google Scholar