Beneficiation of Kaolins by Hydrocycloning

Article Preview

Abstract:

Kaolin is a white clay, formed by hydrated aluminum silicates, which has several industrial applications. Since it is associated to impurities and presents considerable contents of contaminant elements that interfere in its performance and in its applications, kaolin must pass through a beneficiation process in order to meet the market's demands. The purpose of this work is to study the use of a hydrocyclone in the beneficiation of primary kaolins from Província Pegmatítica da Borborema. The samples were characterized by cation-exchange capacity (CEC), granulometric analysis by laser diffraction (GA), chemical composition by X-ray fluorescence (EDX), X-ray diffraction (DRX), differential thermal analysis (DTA) and thermogravimetric analysis (TG). The purification process did not show good results for kaolin in ABNT 200 mesh in the attempt to obtain colloidal kaolin. On the other hand, it presented very promising results for the beneficiation of raw kaolin, proving the feasibility of the application of this technology to the granulometric classification of this mineral, being an alternative route for the processes adopted in the regional kaolin beneficiation plants, which use washing and sieving.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-199

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.A.N.G. Silva, F.M.S. Garrido, M.E. Medeiros, J.A. Sampaio, A.B. Luz, L.S. Mello: Química Nova, Vol. 34 (2) (2011), p.262.

Google Scholar

[2] H. Cheng, L. Qinfu, J. Yang, S. Ma, R.L. Geada: Thermochimica Acta, Vol. 545 (2012), p.1.

Google Scholar

[3] A.B. Luz, A.P. Chaves: Rochas e Minerais Industriais, Centro de Tecnologia Mineral, Vol. 1 (2000), p.72.

Google Scholar

[4] F. Larroyd, C.O. Petter, C.H. Sampaio: Minerals Engineering Vol. 15 (2002), p.1191.

Google Scholar

[5] A.B. Luz, I. Yildirim, R.H. Yoon: Developments in Mineral Processing Vol. 13 (2000).

Google Scholar

[6] A.K.A. Rocha: Incorporação de resíduo de caulim em argamassa de alvenaria: Mestrado (Dissertação). Campina Grande, 2005. Universidade Federal de Campina Grande (UFCG). (PB).

DOI: 10.14393/19834071.2015.30311

Google Scholar

[7] V. Golyk, S. Huber, M.G. Farghaly, G. Prölss, E. Endres, T. Neesse, M.A. Hararah: Minerals Engineering Vol. 24 (2011), p.98.

DOI: 10.1016/j.mineng.2010.07.008

Google Scholar

[8] L. Svarovsky: Solid – Liquid Separation. Butterworths 2° ed. London, (2000).

Google Scholar

[9] J.M.R. Costa, I.A. Silva, H.S. Ferreira, R.R. Menezes, G.A. Neves, H.C. Ferreira: Cerâmica Vol. 58 (2012), p.419.

Google Scholar

[10] R.E. Grim: Clay Mineralogy. (International Series in the Earth and Planetary Sciences. McGraw-Hill Book Company Second edition New York, 1968).

Google Scholar

[11] J. Mitchell: Fundamentals of Soil Behavior. (John Wiley & Sons, Inc. 2 ed. New York, 1993).

Google Scholar

[12] P. Sousa Santos: Tecnologia de Argilas, Aplicada às Argilas Brasileiras. (Edgard Blücher v. 1 São Paulo, 1975).

Google Scholar

[13] P. Sousa Santos: Tecnologia de Argilas. (Ed. Edgard Blücher vols. 1-2 São Paulo, 1992).

Google Scholar

[14] G. Lecomte-Nana, A. Mokrani; N. Tessier-Doyen, H. Boussois, H. Goure-Doubi: Ceramics International Vol. 39 (8) (2013), p.9047.

DOI: 10.1016/j.ceramint.2013.04.108

Google Scholar

[15] A.H. Aza, X. Turrillas, M.A. Rodriguez, T. Duran, P. Pen: Journal of the European Ceramic Society Vol. 34 (5) (2014), p.1409.

Google Scholar

[16] J.E. Gardolinski Filho, H.P.M. Wypych: Química Nova Vol. 26 (1) (2003), p.30.

Google Scholar