Tensile Behavior of Epoxy Composites Reinforced with Thinner Fibers of Sugarcane Bagasse

Article Preview

Abstract:

Surgarcane bagasse is an industrial waste partially used as fuel for sugar and ethanol processing boilers. A considerably amount of bagasse, however, is disposed into the environment without a practical use. Research works are investigating the possible application of the fibers of these bagasse waste as reinforcement of polymer composites. Thus, the aim of the present work was to evaluate the mechanical behavior of epoxy composites reinforced with different volume fractions, up to 30 %, of thinner sugarcane bagasse fibers. Specimens with aligned fibers were tensile tested at room temperature and the ultimate strength, elastic modulus and total deformation results indicated a superior performance as compared to composites reinforcement with average thicker bagasse fibers

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-226

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.G. Satyanarayana, J.L. Guimarães and F. Wypych: Compos. Part A Vol. 38 (2007), p.1694.

Google Scholar

[2] CONAB – Brazilian Company of Food Provisioning. Available at www. conab. gov. br. Accessed January (2015).

Google Scholar

[3] V.S. Candido: Characterization and properties of polymer composites reinforced with sugarcane bagasse fibers. Master (Dissertation). Rio de Janeiro, 2010. Instituto Militar de Engenharia (IME). (RJ) (In Portuguese).

Google Scholar

[4] A.K. Bledzki and J. Gassan: Prog. Polym. Sci. Vol. 4 (1999), p.221.

Google Scholar

[5] D. Nabi Sahed and J.P. Jog: Adv. Polym Technol. Vol. 18 (1999), p.351.

Google Scholar

[6] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vols. 276/277 (2000), p.1.

Google Scholar

[7] T. Peijs, Natural fibers based composites. Mater. Technol. 15 (2000) 281-285.

Google Scholar

[8] S.J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell and A. Dufresne: J. Mat. Sci. Vol. 36 (2001), p.2107.

Google Scholar

[9] A.K. Mohanty M. Misra and L.T. Drzal: J Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[10] A.N. Netravali and S. Chabba: Mater. Today Vol. 6 (2003), p.22.

Google Scholar

[11] J. Crocker: Mater. Technol. Vols. 2-3 (2008), p.174.

Google Scholar

[12] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[13] K.G. Satyanarayana, G.C. Arizaga and F. Wypych: Progr. Polym. Sci. Vol. 34 (2009), p.982.

Google Scholar

[14] S. N Monteiro, F.P.D. Lopes, A.S. Ferreira and D.C. O Nascimento: JOM Vol. 61 (2009), p.17.

Google Scholar

[15] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and L. L Costa: Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[16] S. Kalia, B.S. Kaith, I. Kaurs, Editors, Cellulose Fibers: Bio and Nano-Polymer Composites, 1st Ed., Springer, New York, EUA, (2011).

Google Scholar

[17] O. Faruk, A.K. Bledzki, H.P. Fink and M. Sain: Progress in Polymer Science Vol. 37 (2012), p.1552.

Google Scholar

[18] V.K. Thakur, M.K. Thakur and R.K. Gupta: Intl. J. Polym Analys. Charact. Vol. 19 (2014), p.256.

Google Scholar

[19] O. Faruk, A.K. Bledzki, H.P. Fink and M. Sain: Macromolecular Materials and Engineering Vol. 299 (2014), p.9.

Google Scholar

[20] S.N. Monteiro, R.J.S. Rodriguez, M.V. Souza and J.R.M. d'Almeida: Adv. Performance Mater. Vol. 5 (1998), p.183.

Google Scholar

[21] C.G. Mothé, C.R. Araujo, M.A. Oliveira and M.I. Yoshida: J. Thermal Analysis and Calorimetry Vol. 67 (2002), p.305.

Google Scholar

[22] W.G. Trindade, W. Horeau, J.D. Megiatto, A.T. Razera, A. Castellan and E. Frollini: Biomacromol. Vol. 6 (2005), p.2485.

Google Scholar

[23] Y. Lei, Q Wu, F. Yao and Y. Xu: Compos. Part A. Vol. 38 (2007), p.1664.

Google Scholar

[24] V. Vilay, M. Mariatti, R. Mattaib and M. Todo: Compos. Sci. Technol. Vol. 68 (2008), p.631.

Google Scholar

[25] Y. Habibi, W.K. El-Zawawy, M.M. Ibrahim and A. Dufresne: Sci. and Technol. Vol. 68 (2008), p.1877.

Google Scholar

[26] D.R. Mulinari, H.J.C. Voorwald, M.A.H. Cioffi, M.L.C.P. Silva and S.M. Luz: Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polym. 75 (2009) 317-321.

DOI: 10.1016/j.carbpol.2008.07.028

Google Scholar

[27] E.F. Cerqueira, C.A.R.P. Baptista and D.R. Mulinari: Engineering Procedia Vol. 10 (2011), p. (2046).

Google Scholar

[28] R.J. Brugnago, J.L. Guimarães, F. Wypych and L.P. Ramos: Compos. Part A Vol. 42 (2011), p.364.

Google Scholar

[29] D. Verma, P.C. Gope, M.K. Maheshwari and R.K. Sharma: J. Mater. Environm. Sci. Vol. 3 (2012), p.1079.

Google Scholar

[30] A. Mouvbarik, N. Grimi and N. Boussetta: Compos. Part B Vol. 52 (2013), p.233.

Google Scholar

[31] V.S. Candido, M.P. Oliveira, R.A. Gouvêa, A.L.B.S. Martins and S.N. Monteiro: Mater. Sci. Forum Vols. 775-776 (2014), p.80.

Google Scholar

[32] A.L.B.S. Martins, R.A. Gouvêa, M.P. Oliveira, V.S. Candido and S.N. Monteiro: Mater. Sci. Forum Vol. 775-776 (2014), p.102.

Google Scholar

[33] P.G. Paula, R.J.S. Rodriguez, L.P.R. Duarte, V.S. Candido and S.N. Monteiro: Mater. Sci. Forum Vols. 775-776 (2014), p.319.

Google Scholar

[34] W.D. Callister Jr. and D.G. Rethwisch: Materials Science and Engineering – An Introduction. (John Wiley & Sons8th Ed., Hoboken NJ 2010).

Google Scholar