Dynamic-Mechanical Performance of Sponge Gourd Fiber Reinforced Polyester Composites

Article Preview

Abstract:

The engineering applications of natural materials to replace synthetic ones has marked increased in past decades owing to environmental, societal and economical issues. Among these natural materials, the lignocellulosic fibers obtained from plants are successfully being used as polymer composites reinforcement is substitution of the traditional glass fiber. One relatively unknown lignocellulosic fiber with potential for composite reinforcement is that extracted from the sponge gourd. In the present work, the dynamic-mechanical performance of unsaturated orthophtalic polyester matrix composites was evaluated for different volume fractions of continuous and aligned sponge gourd fiber reinforcement. The results revealed that an increasing incorporation of sponge gourd fiber improved the composite viscoelastic stiffness, while decreasing its glass transition temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-208

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Gore, An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can Do About It. Rodale Press, Emmaus, USA, (2006).

DOI: 10.22621/cfn.v120i4.378

Google Scholar

[2] R. Kozlowski, M. Rawluk and J. Barriga, State of the art-production, processing and applications of fibrous plants. In: R.L. Sivam and R.C. Araújo ed., 2nd International Conference on Textile Engineering (SINTEX-2004) Proceedings, September 7–11, 2004, Natal, in CD-ROM, Paper TIP-1-007.

Google Scholar

[3] K.G. Satyanarayana, J.L. Guimarães and F. Wypych: Composites: Part A Vol. 38 (2007), p.1694.

Google Scholar

[4] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and L. L Costa: Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[5] P. Wambua, I. Ivens and I. Verpoest: Compos. Sci. Technol. Vol. 63 (2003), p.1259.

Google Scholar

[6] S.V. Joshi, L.T. Drzal, A.K. Mohanty and S. Arora: Composites Part A Vol. 35 (2004), p.371.

Google Scholar

[7] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vols. 276/277 (2000), p.1.

Google Scholar

[8] A.K. Mohanty M. Misra and L.T. Drzal: J Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[9] A.N. Netravali and S. Chabba: Mater. Today Vol. 6 (2003), p.22.

Google Scholar

[10] J. Crocker: Mater. Tech. Vols. 2-3 (2008), p.174.

Google Scholar

[11] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[12] K.G. Satyanarayana, G.C. Arizaga and F. Wypych: Progr. Polym. Sci. Vol. 34 (2009), p.982.

Google Scholar

[13] S.N. Monteiro, F.P.D. Lopes, A.S. Ferreira and D.C.O. Nascimento: JOM Vol. 61 (2009), p.17.

Google Scholar

[14] O. Faruk, A.K. Bledzki, H. -P. Fink and M. Sain: Progress in Polymer Science Vol. 37 (2012), p.1552.

Google Scholar

[15] V.K. Thakur, M.K. Thakur and R.K. Gupta: Intl. J. Polym Analys. Charact. Vol. 19 (2014), p.256.

Google Scholar

[16] O. Faruk, A.K. Bledzki, H. -P. Fink and M. Sain: Macromolecular Materials and Engineering Vol. 299 (2014), p.9.

Google Scholar

[17] G. Marsh: JOM Vol. 58 (2006), p.80.

Google Scholar

[18] R. Zah, R. Hischier, A.L. Leão and I. Brown: J. Cleaner Production Vol. 15 (2007), p.1032.

Google Scholar

[19] N. Thomas, S.A. Paul, L.A. Pothan and B. Deepa, Natural fibers: structure, properties and applications. In: Kalia, S.; Kaith, B. S.; Kaur, I. (Eds. ), Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer - Verlag: Berlin - Heidelberg, Germany, 2011; pp.3-42.

DOI: 10.1007/978-3-642-17370-7_1

Google Scholar

[20] C.A. Boynard and J.R.M. d'Almeida: Polym. Plast. Technol. Eng. Vol. 39 (2000), p.489.

Google Scholar

[21] C.A. Boynard, S.N. Monteiro and J.R.M. d'Almeida: J. Appl. Polym. Sci. Vol. 87 (2003), p. (1927).

Google Scholar

[22] K.C.M. Nair, S. Thomas and G. Groeninckx: Compos. Sci. Technol. Vol. 61 (2001), p.2519.

Google Scholar

[23] V.S. Cândido, M.P. Oliveira, R.A. Gouvêa, A.L.B.S. Martins and S.N. Monteiro: Mater Sci Forum Vols. 775-776 (2014), p.86.

Google Scholar

[24] S. Mohanty, S.K. Verma and S.K. Nayar: Compos. Sci. Technol. Vol. 66 (2006), p.538.

Google Scholar

[25] S.N. Monteiro, F.M. Margem, J.I. Margem, L.B.S. Martins, C.G. Oliveira and M.P. Oliveira: Mater Sci. Forum Vols. 775-776 (2014), p.278.

DOI: 10.4028/www.scientific.net/msf.775-776.278

Google Scholar

[26] S.N. Monteiro, F.M. Margem, L.B.S. Martins, R.L. Loiola, and M.P. Oliveira: Mater Sci Forum Vols. 775-776 (2014), p.302.

Google Scholar

[27] I.L.A. Silva, A.B. Bevitori, C.G. Oliveira, F.M. Margem and S.N. Monteiro, Dynamic-mechanical behavior of epoxy composites reinforced with jute fiber. In: Characterization of Minerals, Metals and Materials, 2014, Wiley, Hoboken, NJ, USA, 2014, pp.493-488.

DOI: 10.1002/9781118888056.ch56

Google Scholar

[28] A.K. Saha, S. Das, D. Bhatta and B.C. Mitra: J. Appl. Polym. Sci. Vols. 71 (1999), p.1505.

Google Scholar

[29] J.M. Felix and P. Gateholm: J. Appl. Polym. Sci. Vol. 42 (1991), p.601.

Google Scholar