Fabrication of Polypyrrole Nanoparticles Using Microemulsion Polymerization for Diferent Py/APS/SDS Molar Ratios

Article Preview

Abstract:

Polypyrrole nanoparticles (PPy) were synthesized by the chemical oxidative microemulsion of pyrrole (Py) monomer using ammonium persulfate (APS) as an oxidant agent and sodium dodecylsulfate (SDS) as a surfactant at 28°C and 0°C. Different Py:APS:SDS molar ratios were used, and the properties of the resulting material were examined by four-probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-vis-Nir), and Fourier-transform infrared (FTIR) spectroscopies as well as field-emission scanning electron microscopy (FESEM). UV-vis-Nir and FTIR spectra show the formation of a polaron band owing to the doping of PPy by SDS. The electrical conductivity and morphology of PPy nanoparticles depend on the synthesis conditions. Electrical conductivity of ~95.3×10-3 S/cm was achieved for PPy synthesized at 0°C. For the same Py:APS:SDS molar ratio, the nanoparticle shape changed from cylindrical to spherical upon simply lowering the synthesis temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-395

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Omastová, M. Mičušík: Chem. Pap. Vol. 66 (2012), p.392.

Google Scholar

[2] J. Pecher, S. Mecking: Chem. Rev. Vol. 110 (2010), p.6260.

Google Scholar

[3] R. Balint, N.J. Cassidy, S.H. Cartmell: Acta Biomater. Vol. 10 (2014), p.2341.

Google Scholar

[4] C.R. Martins, Y.M. Almeida, G.C. Nascimento, W.M. Azevedo: J. Mater. Sci. Vol. 41 (2006), p.7413.

Google Scholar

[5] L. Pan, H. Qiu, C. Dou, Y. L. Pu, J. Xu, Y. Shi: Int J. Mol. Sci. Vol. 11 (2010), p.2636.

Google Scholar

[6] J. Jang, J.H. Oh, G.D. Stucky: Angew. Chem. Int. Ed. Vol. 114 (2002), p.4188.

Google Scholar

[7] X. Zhang, J. Zhang, W. Song, Z. Liu: J. Phys. Chem. B Vol. 110 (2006), p.1158.

Google Scholar

[8] J. Choi, H. Kim, S. Haam, S.Y. Lee: J. Dispersion Sci. Technol. Vol. 31 (2010), p.743.

Google Scholar

[9] J. Hazarika, A. Kumar: Synth. Met. Vol. 175 (2013), p.155.

Google Scholar

[10] A. Reung-u-Rai, A. Prom-Jun, W. Prissanaroon-Ouajai, S. Ouajai: J. Met. Mater. Miner. Vol. 18 (2008), p.27.

Google Scholar

[11] X. Chen, J.P. Issi, J. Devaux, D. Billaud: Polym. Eng. Sci. Vol. 35 (1995), p.642.

Google Scholar

[12] R. Faez, C.R. Martins, P.S. Freitas, O.K. Kosima, G. Ruggeri, M.A. Paoli: Quím. Nova Vol. 11 (2000), p.13.

Google Scholar

[13] J. Lei, Z. Cai, C.R. Martin: Synth. Met. Vol. 46 (1992), p.53.

Google Scholar

[14] F. Yan, G. Xue, M. Zhou: J. Appl. Polym. Sci. Vol. 77 (2000), p.135.

Google Scholar

[15] E.N. Zare, M.M. Lakouraj, M. Mohseni: Synth. Met. Vol. 187 (2014), p.09.

Google Scholar