Density Weibull Analysis of Pineapple Leaf Fibers (PALF) with Different Diameters

Article Preview

Abstract:

Societal, economical, technical and environmental advantages are today justifying the replacement of synthetic fibers by natural fibers. However, natural fibers obtained from plants do not present the same dimensional uniformity. In fact, they show large dispersion of values, as compared to synthetic fibers. In the case of the lignocellulosic fiber extracted from the pineapple leaf, limited information exists regarding the correlation between its properties and dimensional characteristics. In particular, so far, no investigation has been carried out on the influence of the diameter and the density of pineapple fibers. Therefore, the objective of this work was to measure the density of pineapple fibers and to define, by means of the Weibull statistic method, its dependence on the corresponding fiber diameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

384-390

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Gore: An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can do About It. (Rodale Press Emmaus, Pennsylvania, 2006).

DOI: 10.22621/cfn.v120i4.378

Google Scholar

[2] G. Marsh: JOM Vol. 58 (2006), p.80.

Google Scholar

[3] R. Zah, R. Hischier, A.L. Leão and I. Brown: J. Cleaner Production Vol. 15 (2007), p.1032.

Google Scholar

[4] N. Thomas, S.A. Paul, L.A. Pothan and B. Deepa, Natural fibers: structure, properties and applications. In: Kalia, S.; Kaith, B. S.; Kaur, I. (Eds. ), Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer - Verlag: Berlin - Heidelberg, Germany, 2011; pp.3-42.

DOI: 10.1007/978-3-642-17370-7_1

Google Scholar

[5] T. Corbière Nicollier, L.B. Gfeller, L. Lundquist, Y. Leterrier, J.A.E. Manson and O. Jolliet: Resource, Conservation and Recycling Vol. 33 (2001), p.267.

DOI: 10.1016/s0921-3449(01)00089-1

Google Scholar

[6] P. Wambua, I. Ivens and I. Verpoest: Compos Sci Technol. Vol. 63 (2003), p.1259.

Google Scholar

[7] S.V. Joshi, L.T. Drzal, A.K. Mohanty and S. Arora: Compos Part A. 35 (2004), p.371.

Google Scholar

[8] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vols. 276/277 (2000), p.1.

Google Scholar

[9] S.J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell and A. Dufresne: J. Mat. Sci. Vol. 36 (2001), p.2107.

Google Scholar

[10] A.K. Mohanty M. Misra and L.T. Drzal: J Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[11] A.N. Netravali and S. Chabba: Mater. Today Vol. 6 (2003), p.22.

Google Scholar

[12] J. Crocker: Mater. Technol. Vols. 2-3 (2008), p.174.

Google Scholar

[13] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[14] N Monteiro, F.P.D. Lopes, A.S. Ferreira and D.C. O Nascimento: JOM Vol. 61 (2009), p.17.

Google Scholar

[15] K.G. Satyanarayana, G.C. Arizaga and F. Wypych: Progr. Polym. Sci. Vol. 34 (2009), p.982.

Google Scholar

[16] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and L. L Costa: Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[17] O. Faruk, A.K. Bledzki, H. -P. Fink and M. Sain: Progress in Polymer Science Vol. 37 (2012), p.1552.

Google Scholar

[18] V.K. Thakur, M.K. Thakur and R.K. Gupta: Intl. J. Polym Analys. Charact. Vol. 19 (2014), p.256.

Google Scholar

[19] C. Baley: Compos. Part A Vol. 33 (2002), p.939.

Google Scholar

[20] M. Shibata, K.I. Takachiyo, K. Ozawa, R. Yosomiya and H. Takeishi: J. Appl. Polym. Sci. Vol. 85 (2002), p.129.

DOI: 10.1002/app.10665

Google Scholar

[21] J. Biagiotti, S. Fiori, L. Torre, M.A. López-Manchado and J.M. Kenny: Polym. Compos. Vol. 25 (2004), p.26.

Google Scholar

[22] J. Andersons, E. Sparninš, R. Joffe and L. Wallström: Compos. Sci. Technol. Vol. 65 (2005), p.693.

Google Scholar

[23] J. -M. Park, S.T. Quang, B.S. Hwang and K.L. DeVries: Compos. Sci. Technol. Vol. 66 (2006), p.2686.

Google Scholar

[24] L. Peponi, J. Biagiotti, L. Torre, J.M. Kenny and I. Mondragón: Polym. Compos. Vol. 29 (2008), p.313.

Google Scholar

[25] I.M. De Rosa, J.M. Kenny, D. Puglia, C. Santulli and F. Sarasini: Compos. Sci. Technol. Vol. 70 (2010), p.116.

Google Scholar

[26] V. Fiora, A. Valenza and G. Di Bella: Compos. Sci. Technol. Vol. 71 (2011), p.1138.

Google Scholar

[27] A.A. Griffith: The phenomena of rupture and flow in solids. Phil. Trans Roy Soc London, Ser. A 221 (1921) 163-198.

Google Scholar

[28] N.T. Simonassi, R.L. Loiola, R.S. Carreiro, F.M. Margem and S.N. Monteiro: 67º Congresso Internacional da Associação Brasileira de Metalurgia, Materiais e Mineração (ABM). Rio de Janeiro 31de Julho - 03 de Agosto 2012. Proceeding.. Rio de Janeiro 2012. (RJ).

DOI: 10.22239/2317-269x.01977

Google Scholar

[29] J.I. Margem, N.T. Simonassi, F.M. Margem and S.N. Monteiro: 67º Congresso Internacional da Associação Brasileira de Metalurgia, Materiais e Mineração (ABM). Rio de Janeiro 31de Julho - 03 de Agosto 2012. Proceeding.. Rio de Janeiro 2012. (RJ).

DOI: 10.22239/2317-269x.01977

Google Scholar

[30] A.P. Barbosa, M.P. Oliveira, A.S. Crespo, N.S.S. Santos, F.M. Margem and S.N. Monteiro. Correlation between the density and the diameter of buriti fibers. In: Characterization of Minerals, Metals & Materials 2012, Hoboken NJ USA: pub. John Wiley & Sons; 2012. pp.365-371.

DOI: 10.1002/9781118371305.ch43

Google Scholar

[31] A.C. Pereira, W.P. Inacio, F.M. Margem and S.N. Monteiro, Effect of the fiber equivalent diameter on the elastic modulus and density of sisal fibers. In: Characterization of Minerals, Metals & Materials 2012, Hoboken NJ USA: pub. John Wiley & Sons; 2012. pp.357-364.

DOI: 10.1002/9781118371305.ch42

Google Scholar

[32] A.B. Bevitori, I.L.A. Silva, C.G. Oliveira, F. M . Margem and S.N. Monteiro, Weibull analysis of the density of ramie fibers with different diameters. In: Characterization of Minerals, Metals & Materials 2014, Hoboken NJ USA: pub. John Wiley & Sons; 2014. pp.515-522.

DOI: 10.1002/9781118888056.ch60

Google Scholar

[33] S.N. Monteiro, F.M. Margem, H.P.G. Santafé Jr., L.B.S. Martins and M.P. Oliveira: Mater Sci Forum Vols. 775-776 (2014), p.266.

Google Scholar

[34] P.S. Mukherjee and K.G. Satyanarayana: J. Mater. Sci. Vol. 21 (1986), p.51.

Google Scholar

[35] J. George, S.S. Bhagawan and S. Thomas: Compos. Sci Technol. Vol. 58 (1998), p.1471.

Google Scholar

[36] S. Luo and A.N. Netravali: Polym. Compos. Vol. 20 (1999), p.367.

Google Scholar

[37] R. Mangal, N.S. Saxena, M.S. Sreekala, S. Thomas and K. Singh: Mater. Sci. Eng. A Vol. 339 (2003), p.281.

Google Scholar

[38] S. Misra, A.K. Mohanty, L.T. Drzal, M. Misra and G. Hinrichsen: Macromol. Mater. Eng. Vol. 289 (2004), p.955.

Google Scholar

[39] R. Arib, S.M. Sapuan, M.M.H.M. Ahmad, M.T. Paridah and H.M.D.K. Zaman: Mater. Des. Vol. 27 (2006), p.391.

Google Scholar

[40] P. Threepopnatkul, N. Kaerkitcha and N. Athipongarporn: Compos. Part B Vol. 40 (2009), p.628.

Google Scholar

[41] E. Abraham, B. Deepa, L.A. Potham, M. Jacob, S. Thomas, U. Cvelbar and R. Anandjiwale: Carbohydr. Polym. Vol. 86 (2011), p.1468.

Google Scholar

[42] G.O. Glória, G. R. Altoé, Y.M. Moraes, R.L. Loyola, F.M. Margem and S. N. Monteiro, Tensile properties of epoxy composites reinforced with continuous PALF. In: Characterization of Minerals, Metals and Materials 2015, pp.139-140.

DOI: 10.1007/978-3-319-48191-3_17

Google Scholar

[43] G.O. Glória, G. R. Altoé, Y.M. Moraes, P. Amoy Netto, F.M. Margem and S. N. Monteiro, Evaluation of PALF elasticity modulus with different diameter by Weibull analysis. In: Characterization of Minerals, Metals and Materials 2015, pp.607-612.

DOI: 10.1007/978-3-319-48191-3_76

Google Scholar