Correlation between the Density and the Diameter of Fique Fibers

Article Preview

Abstract:

Environmental considerations in addition to technical, economical and societal benefits are contributing to promote the substitution of natural fibers for glass fiber in polymer matrix composites. However, natural fibers are heterogeneous in their dimensions, specially the cross section diameter, which plays an important role in their physical properties. The fibers extracted from the leaf of the fique plant (Furcraea andina) are a promising stiff natural fiber for composite reinforcement. In this work, a statistical analysis of the density of fique fibers using the Weibull methodology was performed. An attempt to correlate the fiber density with the diameter, precisely measured by means of a profile projector, was carried out. The results revealed an inverse dependence, adjusted to a hyperbolic equation, between the fique fiber diameter and corresponding density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

377-383

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and L. L Costa Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[2] S. Kalia, B.S. Kaith and I. Kaurs: Cellulose Fibers: Bio and Nano Polymer Composites (New York, Springer, 2011).

Google Scholar

[3] A. Gore: An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can do About It (Emmaus, Pennsylvania, USA, Rodale Press, 2006).

DOI: 10.22621/cfn.v120i4.378

Google Scholar

[4] A.K. Bledzki and J. Gassan: Prog. Polym. Sci. Vol. 4 (1999), p.221.

Google Scholar

[5] D. Nabi Saheb and J.P. Jog: Adv. Polym. Technol. Vol. 18 (1999), p.351.

Google Scholar

[6] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vols. 276/277 (2000), p.1.

Google Scholar

[7] S.J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell and A. Dufresne: J. Mat. Sci. Vol. 36 (2001), p.2107.

Google Scholar

[8] A.K. Mohanty M. Misra and L.T. Drzal: J Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[9] A.N. Netravali and S. Chabba: Mater. Today Vol. 6 (2003), p.22.

Google Scholar

[10] J. Crocker: Mater. Technol. Vols. 2-3 (2008), p.174.

Google Scholar

[11] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[12] K.G. Satyanarayana, G.C. Arizaga and F. Wypych: Progr. Polym. Sci. Vol. 34 (2009), p.982.

Google Scholar

[13] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and L. L Costa Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[14] O. Faruk, A.K. Bledzki, H.P. Fink and M. Sain: Progress in Polymer Science. Vol. 37 (2012), p.1552.

Google Scholar

[15] V.K. Thakur, M.K. Thakur and R.K. Gupta: Intl. J. Polym Analys. Charact. Vol. 19 (2014), p.256.

Google Scholar

[16] G. Marsh: Mater. Today Vol. 6 (2003), p.36.

Google Scholar

[17] . Holbery and D. Houston: JOM Vol. 58 (2006), p.80.

Google Scholar

[18] R. Zah, R. Hischier, A.L. Leão and I. Brown: J. Cleaner Production Vol. 15 (2007), p.1032.

Google Scholar

[19] N. Thomas, S.A. Paul, L.A. Pothan and B. Deepa, Natural fibers: structure, properties and applications. In: Kalia, S.; Kaith, B. S.; Kaur, I. (Eds. ), Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer - Verlag: Berlin - Heidelberg, Germany, 2011, pp.3-42.

DOI: 10.1007/978-3-642-17370-7_1

Google Scholar

[20] A.G. Kulkarni, K.G. Satyanarayana, K. Sukumaran and P.K. Rohatg: J. Mater. Sci. Vol. 16 (1981), p.905.

Google Scholar

[21] A.G. Kulkarni, K.G. Satyanarayana, P.K. Rohatgi and K. Vijayan: J. Mater. Sci. Vol. 18 (1983), p.2290.

Google Scholar

[22] P.S. Mukherjee and K.G. Satyanarayana: J. Mater. Sci. Vol. 19 (1984), p.3925.

Google Scholar

[23] P.S. Mukherjee and K.G. Satyanarayana: J. Mater. Sci. Vol. 21 (1986), p.51.

Google Scholar

[24] P.S. Mukherjee and K.G. Satyanarayana: J. Mater. Sci. Vol. 21 (1986), p.57.

Google Scholar

[25] C. Baley: Compos. Part A Vol. 33 (2002), p.939.

Google Scholar

[26] M. Shibata, K.I. Takachiyo, K. Ozawa, R. Yosomiya and H. Takeishi: J. Appl. Polym. Sci. Vol. 85 (2002), p.129.

DOI: 10.1002/app.10665

Google Scholar

[27] J. Biagiotti, S. Fiori, L. Torre, M.A. López-Manchado and J.M. Kenny: Polym. Compos. Vol. 25 (2004), p.26.

Google Scholar

[28] J. Andersons, E. Sparninš, R. Joffe and L. Wallström: Compos. Sci. Technol. Vol. 65 (2005), p.693.

Google Scholar

[29] J.M. Park, S.T. Quang, B.S. Hwang and K.L. DeVries: Compos. Sci. Technol. Vol. 66 (2006), p.2686.

Google Scholar

[30] L. Peponi, J. Biagiotti, L. Torre, J.M. Kenny and I. Mondragón: Polym. Compos. Vol. 29 (2008) 313.

Google Scholar

[31] I.M. De Rosa, J.M. Kenny, D. Puglia, C. Santulli and F. Sarasini: Compos. Sci. Technol. Vol. 70 (2010), p.116.

Google Scholar

[32] V. Fiora, A. Valenza and G. Di Bella, Artichoke: Compos. Sci. Technol. Vol. 71 (2011), p.1138.

Google Scholar

[33] N.T. Simonassi, R.L. Loiola, R.S. Carreiro, F.M. Margem and S.N. Monteiro: 67º Congresso Internacional da Associação Brasileira de Metalurgia, Materiais e Mineração (ABM) Rio de Janeiro 31de Julho - 03 de Agosto 2012. Proceeding.. Rio de Janeiro 2012. (RJ).

DOI: 10.22239/2317-269x.01977

Google Scholar

[34] J.I. Margem, N.T. Simonassi, F.M. Margem and S.N. Monteiro: 67º Congresso Internacional da Associação Brasileira de Metalurgia, Materiais e Mineração (ABM) Rio de Janeiro 31de Julho - 03 de Agosto 2012. Proceeding.. Rio de Janeiro 2012. (RJ).

DOI: 10.22239/2317-269x.01977

Google Scholar

[35] A.P. Barbosa, M.P. Oliveira, A.S. Crespo, N.S.S. Santos, F.M. Margem and S.N. Monteiro. Correlation between the density and the diameter of buriti fibers. In: Characterization of Minerals, Metals & Materials 2012, Hoboken NJ USA: pub. John Wiley & Sons; 2012. pp.365-371.

DOI: 10.1002/9781118371305.ch43

Google Scholar

[36] A.C. Pereira, W.P. Inacio, F.M. Margem and S.N. Monteiro, Effect of the fiber equivalent diameter on the elastic modulus and density of sisal fibers. In: Characterization of Minerals, Metals & Materials 2012, Hoboken NJ USA: pub. John Wiley & Sons; 2012. pp.357-364.

DOI: 10.1002/9781118371305.ch42

Google Scholar

[37] A.B. Bevitori, I.L.A. Silva, C.G. Oliveira, F. M . Margem and S.N. Monteiro, Weibull analysis of the density of ramie fibers with different diameters. In: Characterization of Minerals, Metals & Materials 2014, Hoboken NJ USA: pub. John Wiley & Sons; 2014. pp.515-522.

DOI: 10.1002/9781118888056.ch60

Google Scholar

[38] S.N. Monteiro, F.M. Margem, H.P.G. Santafé Jr., L.B.S. Martins and M.P. Oliveira: Mater Sci Forum Vols. 775-776 (2014), p.266.

Google Scholar

[39] P. Gañan and I. Mondragon: Polym Compos. Vol. 23 (2002), p.383.

Google Scholar

[40] P. Gañan and I. Mondragon: J. Thermal Analysis and Calorimetry Vol. 73 (2003), p.783.

Google Scholar