Corrosion Behavior of Fe-Mn-Si-Cr-Ni-Co Shape Memory Stainless Steel in Highly Oxidizing Medium

Article Preview

Abstract:

A study was conducted on the corrosion behavior and characteristics of the passive oxide film of Fe-Mn-Si-Cr-Ni-(Co) shape memory stainless steels (SMSS) in a concentrated nitric acid (HNO3) solution, based on potentiodynamic polarization, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. The results indicated that Fe-Mn-Si-Cr-Ni-(Co) SMSSs exhibit a passive behavior similar to that of 304L austenitic stainless steel (304L SS). However, unlike 304L SS, their high silicon (Si) content renders them insensitive to intergranular attack in highly oxidizing environments. The XPS analysis also indicated that Si appears to be the main element responsible for the high protectiveness afforded by the passive film formed on Fe–Mn–Si–Cr–Ni–Co SMSS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

669-674

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Cladera, B. Weber, C. Leinenbach, C. Czaderski, M. Shahverdi, M. Motavalli: Construction and Building Materials Vol. 63 (2014), p.281.

DOI: 10.1016/j.conbuildmat.2014.04.032

Google Scholar

[2] P. Dai, L. Zhou: Journal of Materials Science Vol. 41 (2006), p.3441.

Google Scholar

[3] P. Fauvet, F. Balbaud, R. Robin, Q.T. Tran, A. Mugnier, D. Espinoux: Journal of Nuclear Materials Vol. 375 (2008), p.52.

DOI: 10.1016/j.jnucmat.2007.10.017

Google Scholar

[4] B. Raj, U.K. Mudali: Progress in Nuclear Energy Vol. 48 (2006), p.283.

Google Scholar

[5] W.Z. Jin, H. Kokawa, Z.J. Wang, Y.S. Sato, N. Hara: ISIJ International Vol. 50 (2010), p.476.

Google Scholar

[6] N. Padhy, S. Kamal, R. Chandra, U. Kamachi Mudali, B. Raj: Surface and Coatings Technology Vol. 204 (2010), p.2782.

DOI: 10.1016/j.surfcoat.2010.02.047

Google Scholar

[7] N. Padhy, S. Ningshen, B.K. Panigrahi, U. Kamachi Mudali: Corrosion Science Vol. 52 (2010), p.104.

DOI: 10.1016/j.corsci.2009.08.042

Google Scholar

[8] M. Mayuzumi, J. Ohta, K. Kako, E. Kawakami: Corrosion Vol. 56 (2000), p.910.

Google Scholar

[9] C.A.D. Rovere, J.H. Alano, J. Otubo, S.E. Kuri: Journal of Alloys and Compounds Vol. 509 (2011), p.5376.

DOI: 10.1016/j.jallcom.2011.02.051

Google Scholar

[10] C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri: Corrosion Science Vol. 57 (2012), p.154.

DOI: 10.1016/j.corsci.2011.12.022

Google Scholar

[11] C.A.D. Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri: Materials Chemistry and Physics Vol. 133 (2012), p.668.

DOI: 10.1016/j.matchemphys.2012.01.049

Google Scholar

[12] S. Kajiwara: Materials Science and Engineering A Vols. 273–275 (1999), p.67.

Google Scholar

[13] E. McCafferty: Corrosion Science Vol. 47 (2005), p.3202.

Google Scholar

[14] S. Ningshen, U. Kamachi Mudali, G. Amarendra, B. Raj: Corrosion Science Vol. 51 (2009), p.322.

DOI: 10.1016/j.corsci.2008.09.038

Google Scholar

[15] O.V. Kasparova: Protection of Metals Vol. 40 (2004), p.425.

Google Scholar

[16] R. Robin, F. Miserque, V. Spagnol: Journal of Nuclear Materials Vol. 375 (2008), p.65.

Google Scholar

[17] W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, K. Edström: Applied Surface Science Vol. 258 (2012), p.5790.

DOI: 10.1016/j.apsusc.2012.02.099

Google Scholar

[18] C.O.A. Olsson, D. Landolt: Electrochimica Acta Vol. 48 (2003), p.1093.

Google Scholar