Ion Exchange in Sodium Titanate Nanoribbons and its Application in Dye Photodegradation of Remazol Blue

Article Preview

Abstract:

This work addresses the main point, the synthesis of one-dimensional titanate nanostructures and their ion exchange with transition metals for application in photocatalysis. The catalysts tested in the photocatalytic process were titanate nanoribbons (NRTi) synthesized by hydrothermal method and ion exchanged with Sn2+. The structural and morphological analysis of the material was performed by XRD, Raman spectroscopy and TEM images, confirming the formation of the desired structures and the growth of SnO2 nanoparticles after the ion exchange process with average size smaller than 10 nm. The values of surface area were obtained by BET and showed a significant increment after the ion exchange process, making it favorable for application in photocatalysis. The NRTi was applied in the degradation of blue dye remazol, generating a total degradation in 120 minutes. The rate constants were calculated from the pseudo-first-order equation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

795-799

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Jiang, H. LinHua, M. Li'E, L. WenXin, T. HuaJun, D. SongYuan: Sci. China Chem. Vol. 55 (3) (2012), p.368.

Google Scholar

[2] C.C. Tsai, Y.Y. Chu, H. Teng: Thin Solid Films Vol. 519 (2010), p.662.

Google Scholar

[3] Q. Wang, Z.H. Wen, J.H. Li: Adv. Funct. Mater. Vol. 16 (2006), p.2141.

Google Scholar

[4] G. Wang, Q. Wang, W. Lu, J.H. Li:J. Phys. Chem. B Vol. 110 (2006), p.22029.

Google Scholar

[5] A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P.G. Bruce: Adv. Mater. Vol. 17 (2005), p.862.

Google Scholar

[6] Q.J. Li, J.W. Zhang, B.B. Liu, M. Li, R. Liu, X.L. Li, H.L. Ma, S.D. Yu, L. Wang, Y.G. Zou, Z.P. Li, B. Zou, T. Cui, G.T. Zou: Inorg. Chem. Vol. 47 (2008), p.9870.

DOI: 10.1021/ic800758d

Google Scholar

[7] C.H. Lin, J.H. Chao, C.H. Liu, J.C. Chang, F.C. Wang: Langmuir Vol. 24 (2008), p.9907.

Google Scholar

[8] K. Kiatkittipong, C. Ye, J. Scott, R. Amal: Crystal Growth and Design Vol. 10 (2010), p.3618.

Google Scholar

[9] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara: Langmuir Vol. 14 (1998), p.3160.

DOI: 10.1021/la9713816

Google Scholar

[10] G.H.D. Chen, S. Zhang, L.M. Peng: Acta Crystallographica Section B Vol. 58 (2002), p.587.

Google Scholar

[11] Z.Y. Yuan, J.F. Colomer, B.L. Su: Chem. Phys Lett. Vol. 363 (2002), p.362.

Google Scholar

[12] J.M.F. Bavykin, F.C. Walsh: Adv. Mater. Vol. 18 (2006), p.2807.

Google Scholar

[13] Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng: Adv. Mater. Vol. 14 (2002), p.1208.

Google Scholar

[14] C.C. Tsai, H. Teng: Chem. Mater. Vol. 18 (2005), p.367.

Google Scholar

[15] D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming: Chem. Mater. Vol. 18 (2005), p.547.

Google Scholar

[16] B.M. Wen, C.Y. Liu, Y. Liu: New. J. Chem. Vol. 29 (2005), p.969.

Google Scholar

[17] A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce: Angew Chem. Int. Edit. Vol. 43 (2004), p.2286.

Google Scholar

[18] L. Zhao, J. Ran, Z. Shu, G. Dai, P. Zhai, S. Wang: Intern. J. Photoenergy (2012), p.1.

Google Scholar

[19] J. Yu, Q. Xiang, M. Zhou: Appl. Catal. B Environm. Vol. 90 (2009), p.595.

Google Scholar

[20] X. Wang, Z. Jin, C. Feng, Z. Zhang, H. Dang: J. Solid State Chem. Vol. 178 (2005), p.638.

Google Scholar