Phase Equilibria in the Copper-Rich Corner of the Cu-Ni-Si-Cr System

Article Preview

Abstract:

Thermodynamic modeling of phase equilibria in the copper-rich corner of the Cu–Ni–Si–Cr system is performed. The "FactSage" software was used for thermodynamic modeling. Isothermal sections of the Cu–Ni–Si–Cr phase diagram with phase existence areas depending on the concentrations of nickel, silicon and chrome are plotted. Reactions between nickel, silicon and chrome, dissolved in a copper melt, are studied experimentally. The samples after crystallization are investigated using scanning electron microscope and X-ray phase analysis. The conditions of silicide formation in as-cast condition are defined. The research results can be used for technology analysis in copper and copper-based alloys production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Smiryagin, N.A. Smiryagina, A.V. Belova, Industrial Non-Ferrous Metals and Alloys, third ed., Metallurgy Publ., Moscow, (1974).

Google Scholar

[2] M.D. Teplitckyi, A.K. Nikolaev, N.I. Revina, V.M. Rozenberg, Investigation of disperse precipitates in the aging hardening copper-nickel-silicon and copper-cobalt-silicon alloys, Physics of Metals and Metallography. 40 (1975) 1240-1243.

Google Scholar

[3] W. Sun, H. Xu, S. Liu, Y. Du, Z. Yuan, B. Huang, Phase equilibria of the Cu–Ni–Si system at 700 °С, Journal of Alloys and Compounds. 509 (2011) 9776-9781.

DOI: 10.1016/j.jallcom.2011.07.106

Google Scholar

[4] R. Monzen, Ch. Watanabe, Microstructure and mechanical properties of Cu–Ni–Si alloys, Materials Science and Engineering A. 483-484 (2008) 117-119.

DOI: 10.1016/j.msea.2006.12.163

Google Scholar

[5] A. Popa, S. Constantinescu, J.R. Groza, I. Bock, New high-temperature copper alloys, Journal of Materials Engineering and Performance. 5 (1996) 695-698.

DOI: 10.1007/bf02646904

Google Scholar

[6] E. Lee, S. Han, K. Euh, S. Lim, S. Kim, Effect of Ti addition on tensile properties of Cu-Ni-Si alloys, Metals and Materials International. 17 (2011) 569-576.

DOI: 10.1007/s12540-011-0807-7

Google Scholar

[7] X. -P. Xiao, B. -Q. Xiong, Q. -S. Wang, G. -L. Xie, L. -J. Peng, G. -X. Huang, Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments, Rare Metals. 32 (2013) 144-149.

DOI: 10.1007/s12598-013-0024-2

Google Scholar

[8] S. Krishna, J. Srinath, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, Microstructure and properties of a high-strength Cu-Ni-Si-Co-Zr alloy, Journal of Materials Engineering and Performance. 22 (2013) 2115-2120.

DOI: 10.1007/s11665-013-0482-6

Google Scholar

[9] S.Z. Han, J.H. Gu, J.H. Lee, Z.P. Que, J.H. Shin, S.H. Lim, S.S. Kim, Effect of V addition on hardness and electrical conductivity in Cu-Ni-Si alloys, Metals and Materials International. 19 (2013) 637-641.

DOI: 10.1007/s12540-013-4002-x

Google Scholar

[10] Y.G. Kim, T.Y. Seong, J.H. Han, A.J. Ardell, Effect of heat treatment on precipitation behaviour in a Cu-Ni-Si-P alloy, Journal of Materials Science. 21 (1986) 1357-1362.

DOI: 10.1007/bf00553275

Google Scholar

[11] A. Khereddine, L. Djebala, H. Azzeddine, B. Alili, D. Bradai, X-ray diffraction analysis of cold-worked Cu-Ni-Si and Cu-Ni-Si-Cr alloys by Rietveld method, Transactions of Nonferrous Metals Society of China. 21 (2011) 482-487.

DOI: 10.1016/s1003-6326(11)60740-1

Google Scholar

[12] A.K. Nikolaev, A.I. Novikov, V.M. Rozenberg, The Chrome Bronze, Metallurgy Publ., Moscow, (1983).

Google Scholar

[13] L. Jingguo, H. Jinliang, L. Ping, J. Xiaotian, Z. Dongmei, Z. Xiao, The effects of aging precipitation on the recrystallization of CuNiSiCr alloy, Journal of Wuhan University of Technology. 20 (2005) 21-24.

DOI: 10.1007/bf02870865

Google Scholar

[14] Z. Rdzawski, J. Stobrawa, Thermomechanical processing of Cu–Ni–Si–Cr–Mg alloy, Materials Science and Technology. 9 (1993) 142-149.

DOI: 10.1179/mst.1993.9.2.142

Google Scholar

[15] J.Y. Cheng, B.B. Tang, F.X. Yu, B. Shen, Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging, Journal of Alloys and Compounds. 614 (2014) 189-195.

DOI: 10.1016/j.jallcom.2014.06.089

Google Scholar

[16] O.V. Samoylova, E.A. Trofimov, G.G. Mihailov, S.V. Ryaboshuk, Phase equilibria that are realized in the copper of the phase diagram of the Cu-Si-Ni, Journal Melts. 5 (2013) 59-65.

Google Scholar

[17] O.V. Samoilova, E.A. Trofimov, G.G. Mikhailov, O.V. Zaitseva, Phase equilibrium realizing in the copper angle of the phase diagram of the Cu-Cr-Si system, Journal Melts. 2 (2015) 7-15.

Google Scholar

[18] N.P. Lyakishev, Diagrams of Binary Metallic Systems, Vol. 2, Mechanical Engineering Publ., Moscow, (1997).

Google Scholar

[19] N.P. Lyakishev, Diagrams of Binary Metallic Systems, Vol. 3, Mechanical Engineering Publ., Moscow, (1999).

Google Scholar

[20] E. M. Sokolovskaya, O.I. Chechernikova, E.I. Gladyshevskiy, O.I. Bodak, Ni–Cu–Si system, Metals. 6 (1973) 192-196.

Google Scholar