Comparative Analysis of Catalytic Activity in Complex NiO-CuO-Fe2O3-Cr2O3 Oxide System of Different Production Technologies

Article Preview

Abstract:

The paper presents the comparative analysis of phase formation in NiO-CuO-Fe2O3-Cr2O3 system at salt decomposition reactions. Spinel phase formation is proven for each material. Synthesized materials are examined with X-ray phase analysis, low temperature nitrogen absorption, electronic microscope scanning. Highly dispersed spinel samples are proven to be obtained through synthesis at organic precursor presence. High catalytic activity of synthesized materials in the process of methyl orange oxidative destruction at hydrogen peroxide presence is determined. The fact is extremely useful for industrial sewage water treatment materials development for enterprises that employ organic pigments or colorants at their production process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-122

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Chen, H. Dai, Yo. Shen, Ju. Baim, Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route, Journal of Alloys and Compounds. 491 (2010) L33-L38.

DOI: 10.1016/j.jallcom.2009.11.031

Google Scholar

[2] Md.E. Uddin, N.H. Kim, T. Kuila, S.H. Lee, D. Hui, Jo.H. Leem, Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine, Composites Part B. 79 (2015) 649-659.

DOI: 10.1016/j.compositesb.2015.05.029

Google Scholar

[3] Al-S.A. Bakr, Ya.M. Moustafa, E.A. Motawea, M.M. Yehia, M.M.H. Khalil, Removal of ferrous ions from their aqueous solutions onto NiFe2O4–alginate composite beads, Journal of Environmental Chemical Engineering. 3 (2015) 1486-1496.

DOI: 10.1016/j.jece.2015.05.020

Google Scholar

[4] B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, S. Behera, Facile synthesis of spinel CuCr2O4 nanoparticles and studies of their photocatalytic activity in degradation of some selected organic dyes, Journal of Alloys and Compounds. 648 (2015).

DOI: 10.1016/j.jallcom.2015.07.012

Google Scholar

[5] W. Yuan, X. Liu, L. Li, Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation, Applied Surface Science. 319 (2014) 350-357.

DOI: 10.1016/j.apsusc.2014.07.158

Google Scholar

[6] S.S. Acharyya, S. Ghosh, S. Adak, D. Tripathi, R. Bal, Fabrication of CuCr2O4 spinel nanoparticles: A potential catalyst for the selective oxidation of cycloalkanes via activation of Csp3–H bond, Catalysis Communications. 59 (2015) 145-150.

DOI: 10.1016/j.catcom.2014.10.015

Google Scholar

[7] S.G. Hosseini, R. Abazari, A. Gavi, Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate, Solid State Sciences. 37 (2014) 72-79.

DOI: 10.1016/j.solidstatesciences.2014.08.014

Google Scholar

[8] A.P. Sanoop, R. Rajeev, Benny K. George, Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate, Thermochimica Acta. 606 (2015) 34-40.

DOI: 10.1016/j.tca.2015.03.006

Google Scholar

[9] H. Zhang, Yu Lei, A. Je. Kropf, G. Zhang, Je.W. Elam, Je.T. Miller, F. Sollberger, F. Ribeiro, M. Cem Akatay, E.A. Stach, Ja.A. Dumesic, C.L. Marshall, Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating, Journal of Catalysis. 317 (2014).

DOI: 10.1016/j.jcat.2015.01.007

Google Scholar

[10] J.S. Kim, K.H. Lee, C.I. Cheon, Crystal structure and the effect of annealing atmosphere on the dielectric properties of the spinels MgAl2O4, NiFe2O4, and NiAlFeO4, Journal of Electroceram. 22 (2009) 233-237.

DOI: 10.1007/s10832-007-9386-x

Google Scholar

[11] S. Bid, P. Sahu, S.K. Pradhan, Microstructure characterization of mechanosynthesized nanocrystalline NiFe2O4 by Rietveld's analysis, Phys. E. 39 (2007) 175-184.

DOI: 10.1016/j.physe.2007.01.005

Google Scholar

[12] W.A. Dollase, H. St.C. O'Neill, The Spinels CuCr2O4 and CuRh2O4, Acta Cryst. C53 (1997) 657-659.

Google Scholar

[13] J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets, Appl. Surface Sci. 254 (2008) 5844-5848.

DOI: 10.1016/j.apsusc.2008.03.065

Google Scholar

[14] C. Nordhei, A.L. Ramstad, D.G. Nicholson, Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution, Phys. Chem. Chem. Phys. 10 (2008) 1053-1066.

DOI: 10.1039/b711918f

Google Scholar

[15] N. Padmanaban, B.N. Avasthi, J. Ghose, Solid State Studies on Rhodium-Substituted CuCr2O4 Spine1 Oxide, Journal of Solid State Chem. 86 (1990) 286-292.

DOI: 10.1016/0022-4596(90)90145-n

Google Scholar

[16] B.J. Kennedy, Q. Zhou The role of orbital ordering in the tetragonal-to-cubic phase transition in CuCr2O4, Journal of Solid State Chem. 181 (2008) 2227-2230.

DOI: 10.1016/j.jssc.2008.05.018

Google Scholar

[17] L. Chen, Yo. Shen, Ju. Bai, Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters, Materials Letters. 63 (2009) 1099-1101.

DOI: 10.1016/j.matlet.2009.02.034

Google Scholar

[18] I. Khosravi, M. Eftekhar, Characterization and evaluation catalytic efficiency of NiFe2O4 nano spinel in removal of reactive dye from aqueous solution, Powder Technology. 250 (2013) 147-153.

DOI: 10.1016/j.powtec.2013.10.021

Google Scholar

[19] X. Hou, Ji. Feng, X. Liu, Yu. Ren, Z. Fan, T. Wei, Ji. Meng, M. Zhang, Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater, Journal of Colloid and Interface Science. 362 (2011) 477-485.

DOI: 10.1016/j.jcis.2011.06.070

Google Scholar

[20] Yu. Ren, Q. Dong, Ji. Feng, Ju. Ma, Q. Wen, M. Zhang, Magnetic porous ferrospinel NiFe2O4: A novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water, Journal of Colloid and Interface Science. 382 (2012).

DOI: 10.1016/j.jcis.2012.05.053

Google Scholar

[21] R.S. Yadav, Ja. Havlica, Ji. Masilko, L. Kalina, Ja. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method, Journal of Magnetism and Magnetic Materials. 394 (2015).

DOI: 10.1016/j.jmmm.2015.07.012

Google Scholar

[22] S. Alamolhoda, S.M. Mirkazemi, T. Shahjooyi, N. Benvidi, Effect of Cetyl trimethylammonium bromide (CTAB) amount on phase constituents and magnetic properties of nano-sized NiFe2O4 powders synthesized by sol–gel auto-combustion method, Journal of Alloys and Compounds. 638 (2015).

DOI: 10.1016/j.jallcom.2015.02.192

Google Scholar

[23] S. Appalakutti, S. Sonawane, B.A. Bhanvase, V. Mittal, M. Ashokkumar, Process intensification of copper chromite (CuCr2O4) nanoparticle production using continuous flow microreactor, Chemical Engineering and Processing. 89 (2015) 28–34.

DOI: 10.1016/j.cep.2014.12.012

Google Scholar

[24] N.P. Shabelskaya, V.V. Ivanov, V.M. Talanov, L.A. Reznichenko, M.V. Talanov, A.K. Ul'yanov, Synthesis and phase formation in the system NiO-CuO-Fe2O3-Cr2O3, Glass and Ceramics. 71 (2014) 18-22.

DOI: 10.1007/s10717-014-9607-0

Google Scholar

[25] N.P. Shabelskaya, Phase Formation Processes in the NiO – CuO – Fe2O3 – Cr2O3 System upon Salt Decomposition, Inorganic Materials. 50 (11) (2014) 1114-1118.

DOI: 10.1134/s002016851411017x

Google Scholar