[1]
L. Chen, H. Dai, Yo. Shen, Ju. Baim, Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route, Journal of Alloys and Compounds. 491 (2010) L33-L38.
DOI: 10.1016/j.jallcom.2009.11.031
Google Scholar
[2]
Md.E. Uddin, N.H. Kim, T. Kuila, S.H. Lee, D. Hui, Jo.H. Leem, Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine, Composites Part B. 79 (2015) 649-659.
DOI: 10.1016/j.compositesb.2015.05.029
Google Scholar
[3]
Al-S.A. Bakr, Ya.M. Moustafa, E.A. Motawea, M.M. Yehia, M.M.H. Khalil, Removal of ferrous ions from their aqueous solutions onto NiFe2O4–alginate composite beads, Journal of Environmental Chemical Engineering. 3 (2015) 1486-1496.
DOI: 10.1016/j.jece.2015.05.020
Google Scholar
[4]
B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, S. Behera, Facile synthesis of spinel CuCr2O4 nanoparticles and studies of their photocatalytic activity in degradation of some selected organic dyes, Journal of Alloys and Compounds. 648 (2015).
DOI: 10.1016/j.jallcom.2015.07.012
Google Scholar
[5]
W. Yuan, X. Liu, L. Li, Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation, Applied Surface Science. 319 (2014) 350-357.
DOI: 10.1016/j.apsusc.2014.07.158
Google Scholar
[6]
S.S. Acharyya, S. Ghosh, S. Adak, D. Tripathi, R. Bal, Fabrication of CuCr2O4 spinel nanoparticles: A potential catalyst for the selective oxidation of cycloalkanes via activation of Csp3–H bond, Catalysis Communications. 59 (2015) 145-150.
DOI: 10.1016/j.catcom.2014.10.015
Google Scholar
[7]
S.G. Hosseini, R. Abazari, A. Gavi, Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate, Solid State Sciences. 37 (2014) 72-79.
DOI: 10.1016/j.solidstatesciences.2014.08.014
Google Scholar
[8]
A.P. Sanoop, R. Rajeev, Benny K. George, Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate, Thermochimica Acta. 606 (2015) 34-40.
DOI: 10.1016/j.tca.2015.03.006
Google Scholar
[9]
H. Zhang, Yu Lei, A. Je. Kropf, G. Zhang, Je.W. Elam, Je.T. Miller, F. Sollberger, F. Ribeiro, M. Cem Akatay, E.A. Stach, Ja.A. Dumesic, C.L. Marshall, Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating, Journal of Catalysis. 317 (2014).
DOI: 10.1016/j.jcat.2015.01.007
Google Scholar
[10]
J.S. Kim, K.H. Lee, C.I. Cheon, Crystal structure and the effect of annealing atmosphere on the dielectric properties of the spinels MgAl2O4, NiFe2O4, and NiAlFeO4, Journal of Electroceram. 22 (2009) 233-237.
DOI: 10.1007/s10832-007-9386-x
Google Scholar
[11]
S. Bid, P. Sahu, S.K. Pradhan, Microstructure characterization of mechanosynthesized nanocrystalline NiFe2O4 by Rietveld's analysis, Phys. E. 39 (2007) 175-184.
DOI: 10.1016/j.physe.2007.01.005
Google Scholar
[12]
W.A. Dollase, H. St.C. O'Neill, The Spinels CuCr2O4 and CuRh2O4, Acta Cryst. C53 (1997) 657-659.
Google Scholar
[13]
J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets, Appl. Surface Sci. 254 (2008) 5844-5848.
DOI: 10.1016/j.apsusc.2008.03.065
Google Scholar
[14]
C. Nordhei, A.L. Ramstad, D.G. Nicholson, Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution, Phys. Chem. Chem. Phys. 10 (2008) 1053-1066.
DOI: 10.1039/b711918f
Google Scholar
[15]
N. Padmanaban, B.N. Avasthi, J. Ghose, Solid State Studies on Rhodium-Substituted CuCr2O4 Spine1 Oxide, Journal of Solid State Chem. 86 (1990) 286-292.
DOI: 10.1016/0022-4596(90)90145-n
Google Scholar
[16]
B.J. Kennedy, Q. Zhou The role of orbital ordering in the tetragonal-to-cubic phase transition in CuCr2O4, Journal of Solid State Chem. 181 (2008) 2227-2230.
DOI: 10.1016/j.jssc.2008.05.018
Google Scholar
[17]
L. Chen, Yo. Shen, Ju. Bai, Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters, Materials Letters. 63 (2009) 1099-1101.
DOI: 10.1016/j.matlet.2009.02.034
Google Scholar
[18]
I. Khosravi, M. Eftekhar, Characterization and evaluation catalytic efficiency of NiFe2O4 nano spinel in removal of reactive dye from aqueous solution, Powder Technology. 250 (2013) 147-153.
DOI: 10.1016/j.powtec.2013.10.021
Google Scholar
[19]
X. Hou, Ji. Feng, X. Liu, Yu. Ren, Z. Fan, T. Wei, Ji. Meng, M. Zhang, Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater, Journal of Colloid and Interface Science. 362 (2011) 477-485.
DOI: 10.1016/j.jcis.2011.06.070
Google Scholar
[20]
Yu. Ren, Q. Dong, Ji. Feng, Ju. Ma, Q. Wen, M. Zhang, Magnetic porous ferrospinel NiFe2O4: A novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water, Journal of Colloid and Interface Science. 382 (2012).
DOI: 10.1016/j.jcis.2012.05.053
Google Scholar
[21]
R.S. Yadav, Ja. Havlica, Ji. Masilko, L. Kalina, Ja. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method, Journal of Magnetism and Magnetic Materials. 394 (2015).
DOI: 10.1016/j.jmmm.2015.07.012
Google Scholar
[22]
S. Alamolhoda, S.M. Mirkazemi, T. Shahjooyi, N. Benvidi, Effect of Cetyl trimethylammonium bromide (CTAB) amount on phase constituents and magnetic properties of nano-sized NiFe2O4 powders synthesized by sol–gel auto-combustion method, Journal of Alloys and Compounds. 638 (2015).
DOI: 10.1016/j.jallcom.2015.02.192
Google Scholar
[23]
S. Appalakutti, S. Sonawane, B.A. Bhanvase, V. Mittal, M. Ashokkumar, Process intensification of copper chromite (CuCr2O4) nanoparticle production using continuous flow microreactor, Chemical Engineering and Processing. 89 (2015) 28–34.
DOI: 10.1016/j.cep.2014.12.012
Google Scholar
[24]
N.P. Shabelskaya, V.V. Ivanov, V.M. Talanov, L.A. Reznichenko, M.V. Talanov, A.K. Ul'yanov, Synthesis and phase formation in the system NiO-CuO-Fe2O3-Cr2O3, Glass and Ceramics. 71 (2014) 18-22.
DOI: 10.1007/s10717-014-9607-0
Google Scholar
[25]
N.P. Shabelskaya, Phase Formation Processes in the NiO – CuO – Fe2O3 – Cr2O3 System upon Salt Decomposition, Inorganic Materials. 50 (11) (2014) 1114-1118.
DOI: 10.1134/s002016851411017x
Google Scholar