The Structure of Carbon Nanotube Exohedral Complexes with Lithium in a Wide Range of Concentrations

Article Preview

Abstract:

The sorption properties of the outer surface of carbon nanotubes with respect to lithium are studied in connection with the search for new materials for lithium battery electrodes. The regularities of the atom ensemble structure with the increased adsorbate concentration have been investigated using ab initio method of computer modeling. Carbon nanotubes (7.7) fragment containing 112 carbon and up to 50 lithium atoms was studied. It is shown that the process of the sequential filling of the nanotube surface by adsorbate consists of two stages. The first of them (the concentration of Li is less than 8 – 9 at. %): distribution of adsorbate atoms on the surface of the tube is determined by the Coulomb repulsion of lithium ions. Chemical interaction between lithium atoms becomes significant at concentration 9 at. %. It leads to the formation of structures such as trimers and tetramers of lithium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-140

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Fergus, Recent developments in cathode materials for lithium ion batteries, Journal of Power Sources. 195 (2010) 939-954.

DOI: 10.1016/j.jpowsour.2009.08.089

Google Scholar

[2] B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chemical Physics Letters. 307 (1999) 153-157.

DOI: 10.1016/s0009-2614(99)00486-8

Google Scholar

[3] J. Zhao, A. Buldum, J. Han, J.P. Lu, First-Principles Study of Li-Intercalated Carbon Nanotube Ropes, Phys. Rev. Lett. 85 (2000) 1706-09.

DOI: 10.1103/physrevlett.85.1706

Google Scholar

[4] W. Kong, L. Sun, Y. Wu, K. Jiang, Q. Li, J. Wang, S. Fan, Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries, Carbon. 96 (2016) 1053-1059.

DOI: 10.1016/j.carbon.2015.10.062

Google Scholar

[5] T.K. Kim, C.S. Rustomji, H. -M. Cho, D. Chun, J. -Y. Jung, E. Caldwell, S. Jin, Multi-wall carbon nanotube-embedded lithium cobalt phosphate composites with reduced resistance for high-voltage lithium-ion batteries, Electronic Materials Letters. 12 (2016).

DOI: 10.1007/s13391-015-5310-8

Google Scholar

[6] M. Ye, C. Hu, L. Lv, L. Qu, Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life, Journal of Power Sources. 305 (2016) 106-114.

DOI: 10.1016/j.jpowsour.2015.11.098

Google Scholar

[7] X. Li, M. Rao, W. Li, Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium–sulfur battery, Journal of Solid State Electrochemistry. 20 (2016) 153-161.

DOI: 10.1007/s10008-015-3013-6

Google Scholar

[8] S. Yoon, S. Lee, S. Kim, K. -W. Park, D. Cho, Y. Jeong, Carbon nanotube film anodes for flexible lithium ion batteries, Journal of Power Sources. 279 (2015) 495-501.

DOI: 10.1016/j.jpowsour.2015.01.013

Google Scholar

[9] E.Y. Matsubara, C. Luengo, J.M. Rosolen, Lithium-doped endohedral single-walled carbon nanotubes can arise during tube growth, Chemical Physics Letters. 590 (2013) 175-179.

DOI: 10.1016/j.cplett.2013.10.077

Google Scholar

[10] S.A. Sozykin, V.P. Beskachko, Structure of endohedral complexes of carbon nanotubes encapsulated with lithium and sodium, Molecular Physics. 111 (2013) 930-938.

DOI: 10.1080/00268976.2012.760049

Google Scholar

[11] M. Khantha, N.A. Cordero, J.A. Alonso, M. Cawkwell, L.A. Girifalco, Interaction and concerted diffusion of lithium in a (5, 5) carbon nanotube, Physical Review B. 78 (2008) 115430.

DOI: 10.1103/physrevb.78.115430

Google Scholar

[12] G. Mpourmpakis, E. Tylianakis, D. Papanikolaou, G. Froudakis, Theoreical study of alkaline metal cations in carbon nanotubes, Reviews on Advanced Materials Science. 11 (2006) 92-97.

Google Scholar

[13] Y. Liu, H. Yukawa, M. Morinaga, First-principles study on lithium absorption in carbon nanotubes. Computational Materials Science. 30 (2004) 50-56.

DOI: 10.1016/j.commatsci.2004.01.035

Google Scholar

[14] K.S. Virdi, K.C.H. Kumar, First-principle Investigation of Lithium Intercalation Behavior of a (3; 3), Materials Science Forum. 736 (2013) 27-31.

DOI: 10.4028/www.scientific.net/msf.736.27

Google Scholar

[15] M. Soler, E. Artacho, J.D. Gale, A. Garc, J. Junquera, P. Ordej, S. Daniel, The SIESTA method for ab initio order- N materials, J. Phys.: Condens. Matter. 14 (2002) 2745-2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[16] Information on http: /supercomputer. susu. ac. ru/en.

Google Scholar

[17] H.J. Monkhorst, J. Pack, Special points for Brillouin-zone integrations, Physical Review B. 13 (1976) 5288-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[18] M. Senami, Y. Ikeda, A. Fukushima, A. Tachibana, Theoretical study of adsorption of lithium atom on carbon nanotube, AIP ADVANCES. 1 (2011) 042106.

DOI: 10.1063/1.3651182

Google Scholar

[19] A.L. Companion, A new diatomics-in-molecules study of Li3 and Li4, Chemical Physics Letters. 56 (1978) 500-502.

DOI: 10.1016/0009-2614(78)89025-3

Google Scholar

[20] B.M. Smirnov, A.S. Yatsenko, Properties of dimers, Physics-Uspekhi. 39 (1996) 211-230.

Google Scholar

[21] Y. Liu, H. Yukawa, M. Morinaga, Local electronic structure of lithium absorbed in carbon nanotubes, Molecular Crystals and Liquid Crystals. 387 (2002) 323-329.

DOI: 10.1080/10587250215235

Google Scholar