Magnetic and Microstructure Study of Thin Films of FeCuNbMoSiB FINEMET Alloy

Article Preview

Abstract:

Thin films of FeCuNbMoSiB have been sputtered on Corning glass substrates with thicknesses varying from 10 to 200 nm with post annealing at 450 °C and 550 °C. Annealing in the presence of the magnetic field applied along the plane of a substrate develops an uniaxial magnetic anisotropy with the in-plane easy axis. Estimation of the effective anisotropy constant from the magnetization measurements gave Keff = 3.23 kJ/m3. Structure and surface of the films were investigated with the X-ray powder diffraction (XRD), resistivity measurements, and Raman spectroscopy. XRD and resistivity analyses show that thermal annealing at 550 °C improves the crystalline fraction and Fe-Si grain size. Raman spectra identified hematite, goethite, magnetite, as well as graphite contamination of film surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-327

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yoshizawa, K. Yamauchi, Magnetic properties of Fe-Cu-M-Si-B (M = Cr, V, Mo, Nb, Ta, W) alloys, Mater. Sci. Eng. A133 (1991) 176.

DOI: 10.1016/b978-0-444-89107-5.50045-9

Google Scholar

[2] M.E. McHenry, M.A. Willard, D.E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets, Progress in Materials Science. 44 (1999) 291-433.

DOI: 10.1016/s0079-6425(99)00002-x

Google Scholar

[3] G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials, Acta Materialia. 61 (2013) 718-734.

DOI: 10.1016/j.actamat.2012.10.040

Google Scholar

[4] J. Moulin, I. Shahosseini, F. Alves, F. Mazaleyrat, Ultrasoft Finemet thin films for magneto-impedance microsensors, J. Micromech. Microeng. 21 (2011) 074010.

DOI: 10.1088/0960-1317/21/7/074010

Google Scholar

[5] C. Yang, P. Li, Yu. Wen, A. Yang, D. Wang, F. Zhang, J. Zhang, Giant converse magnetoelectric effect in PZT/FeCuNbSiB/FeGa/FeCuNbSiB/PZT laminates without magnetic bias field, IEEE Transactions on Magnetics. 51 (2015) 1000404.

DOI: 10.1109/tmag.2015.2435010

Google Scholar

[6] X.Y. Zhang, J.W. Zhang, R.P. Liu, J.H. Zhao, J.H. Liu, Y.Z. Zheng, Influence of annealing temperature on the microstructure of Cu-rich phase in nanocrystalline Fe73. 5Cu1Mo3Si13. 5B9 alloy, Journal of Materials Science Letters. 16 (1997).

Google Scholar

[7] J.E. May, R. Borrozino, S.E. Kuri, C.A.C. de Souza, Study of corrosion resistance of FeNbCuSiB alloys with Mo, J. Metastable and Nanocrystalline Materials. 20-21 (2004) 781-786.

DOI: 10.4028/www.scientific.net/jmnm.20-21.781

Google Scholar

[8] P. Butvin, B. Butvinova, J.M. Silveyra, M. Chromcikova, D. Janickovic, J. Sitek, P. Svec, G. Vlasak, Effects of substitution of Mo for Nb on less-common properties of Finemet alloys, J. Magn. Magn. Mater. 322 (2010) 3035-3040.

DOI: 10.1016/j.jmmm.2010.05.025

Google Scholar

[9] J.M. Silveyra, E. Illekova, Effects of air annealing of Fe-Si-B-M-Cu (M = Nb, Mo), J. Alloys and Compounds. 610 (2014) 180-183.

DOI: 10.1016/j.jallcom.2014.04.147

Google Scholar

[10] J.M. Silveyra, E. Illekova, P. Svec, D. Janickovic, A. Rosales-Rivera, V.J. Cremashi, Phase transformations in Mo-doped FINEMETs, Physica B 405 (2010) 2720-2725.

DOI: 10.1016/j.physb.2010.03.061

Google Scholar

[11] S.P. Chenakin, G.G. Galstyan, A.B. Tolstogouzov, N. Kruse, XPS and ToF-SIMS characterization of a Finemet surface: effect of heating, Surf. Interface Anal. 41 (2009) 231-327.

DOI: 10.1002/sia.3012

Google Scholar

[12] P. Nyhus, S.L. Cooper, Z. Fisk, Electronic Raman scattering across the unconventional charge gap in FeSi, Phys. Rev. B51 (1995) 15626.

DOI: 10.1103/physrevb.51.15626

Google Scholar

[13] M. Hanesch, Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies, Geophysical Journal International. 177 (2009) 941-948.

DOI: 10.1111/j.1365-246x.2009.04122.x

Google Scholar

[14] S.J. Oh, D.C. Cook, H.E. Townsend, Characterization of iron oxides commonly formed as corrosion products on steel, Hyperfine Interactions. 112 (1998) 59-66.

Google Scholar

[15] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology. 8 (2013) 235-246.

DOI: 10.1038/nnano.2013.46

Google Scholar

[16] B. Butvinova, P. Butvin, M. Kadlecikova, L. Malinovsky, Raman spectroscopy used to inspect relationship between surface and magnetic properties of Fe-Nb-Cu-B-Si(4. 5) nanocrystalline ribbons, Kovove Mater. 50 (2012) 145-152.

DOI: 10.4149/km_2012_3_145

Google Scholar

[17] A. Altube, H. Takenouti, L. Beaunier, M. Keddam, S. Joiret, S. Borensztajn, F. Pillier, A.R. Pierna, A microscopic and impedance spectroscopy study of Finemet-Co amorphous alloys, Corrosion Science. 45 (2003) 685-692.

DOI: 10.1016/s0010-938x(02)00146-4

Google Scholar

[18] M. Holtz, W.M. Duncan, S. Zollner, R. Liu, Visible and ultraviolet Raman scattering studies of Si1-xGex alloys, J. Appl. Phys. 88 (2000) 2523.

DOI: 10.1063/1.1287757

Google Scholar

[19] J.J. Song, C. Yang, H.Y. Hu, X.Y. Dai, C. Wang, H.M. Zhang, Penetration depth at various Raman excitation wavelengths and stress model for Raman spectrum in biaxially-strained Si, China-Phys. Mech. Astron. 56 (2013) 2065-(2070).

DOI: 10.1007/s11433-013-5205-3

Google Scholar

[20] G. Herzer, Soft magnetic nanocrystalline materials, Scripta Metallurgica et Materialia. 33 (1995) 1741-1756.

DOI: 10.1016/0956-716x(95)00397-e

Google Scholar

[21] Q. Chen, Z.J. Zhang, Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites, Appl. Phys. Lett. 73 (1998) 3156.

DOI: 10.1063/1.122704

Google Scholar

[22] V. Franco, A. Conde, Influence of anisotropy on the grain size distribution derived from superparamagnetic magnetization curves, J. Magn. Magn. Mater. 277 (2004) 181-186.

DOI: 10.1016/j.jmmm.2003.10.025

Google Scholar

[23] G. Herzer, Anisotropies in soft magnetic nanocrystalline alloys, J. Magn. Magn. Mater. 294 (2005) 99-106.

Google Scholar