[1]
E.B. Ten, E.Y. Likholobov, Control of 110G13L{cyrillic} steel smelting on the basis of oxygen-activity measurements, Steel in Translation. 1 (2012) 25-27.
DOI: 10.3103/s0967091212010196
Google Scholar
[2]
K.N. Vdovin, N.A. Feoktistov, E.V. Sinitskii, D.A. Gorlenko, N.A. Durov, Production of high-manganese steel in arc furnaces, Part 1, Steel in Translation. 10 (2015) 729-732.
DOI: 10.3103/s0967091215100186
Google Scholar
[3]
B. Lv, F.C. Zhang, M. Li, R.J. Hou, L.H. Qian, T.S. Wang, Effects of phosphorus and sulfur on the thermoplasticity of high manganese austenitic steel, Materials Science and Engineering A. 21-22 (2010) 5648-5653.
DOI: 10.1016/j.msea.2010.05.023
Google Scholar
[4]
I. Mejía, A. Bedolla-Jacuinde, J.R. Pablo, Sliding wear behavior of a high - Mn austenitic twinning induced plasticity (TWIP) steel microalloyed with Nb, Wear. 1-2 (2013) 590-597.
DOI: 10.1016/j.wear.2013.01.054
Google Scholar
[5]
C. Iglesias, G. Solórzano, B. Schulz, Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel, Materials characterization. 9 (2009) 971-979.
DOI: 10.1016/j.matchar.2009.03.015
Google Scholar
[6]
L. He, Z. Jin, J. Lu, J. Tang, Modulated structures of Fe-10Mn-2Cr-1. 5C alloy, Materials and Design. 8 (2002) 717-720.
DOI: 10.1016/s0261-3069(02)00072-9
Google Scholar
[7]
M. Abbasi, S. Kheirandish, Y. Kharrazi, J. Hejazi, The fracture and plastic deformation of aluminum alloyed Hadfield steels, Materials Science and Engineering A. 513-514 (2009) 72-76.
DOI: 10.1016/j.msea.2009.02.023
Google Scholar
[8]
K.T. Park, K. G. Jin, S.H. Han, S.W. Hwang, K. Choi, C.S. Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Materials Science and Engineering A. 16-17 (2010) 3651-3661.
DOI: 10.1016/j.msea.2010.02.058
Google Scholar
[9]
A. Nasajpour, A.H. Kokabi, P. Davami, S. Nikzad, Effect of molybdenum on mechanical and abrasive wear properties of coating of as weld Hadfield steel with flux-cored gas tungsten arc welding, Journal of Alloys and Compounds. 659 (2016) 262-269.
DOI: 10.1016/j.jallcom.2015.11.071
Google Scholar
[10]
R. Lazarova, P. Kuzmanov, R. Dimitrova, V. Manolov, A. Cherepanov, Properties of 110G13L{cyrillic} steel and SCh 25 cast iron modified by refractory nanopowder, Steel in Translation. 4 (2012) 298-301.
DOI: 10.3103/s0967091212040080
Google Scholar
[11]
O.A. Zambrano, Y. Aguilar, J. Valdés, S.A. Rodríguez, J.J. Coronado, Effect of normal load on abrasive wear resistance and wear micromechanisms in FeMnAlC alloy and other austenitic steels, Wear. 348-349 (2016) 61-68.
DOI: 10.1016/j.wear.2015.11.019
Google Scholar
[12]
X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu, M. Wang, Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: Effect of Cu addition, Materials and Design. 45 (2013) 518-523.
DOI: 10.1016/j.matdes.2012.09.014
Google Scholar
[13]
R. Xiong, H. Peng, S. Wang, H. Si, Y. Wen, Effect of stacking fault energy on work hardening behaviors in Fe - Mn - Si - C high manganese steels by varying silicon and carbon contents, Materials and Design. 85 (2015) 707-714.
DOI: 10.1016/j.matdes.2015.07.072
Google Scholar
[14]
S.R. Kalidindi. Modeling the strain hardening response of low SFE FCC alloys, International Journal of Plasticity. 12 (1998) 1265-1277.
DOI: 10.1016/s0749-6419(98)00054-0
Google Scholar
[15]
E.G. Astafurova, M.S. Tukeeva, G.G. Maier, E.V. Melnikov, H.J. Maier, Microstructure and mechanical response of single-crystalline high-manganese austenitic steels under high-pressure torsion: The effect of stacking-fault energy, Materials Science and Engineering A. 604 (2014).
DOI: 10.1016/j.msea.2014.03.029
Google Scholar
[16]
B. Gumus, B. Bal, G. Gerstein, D. Canadinc, H.J. Maier, F. Guner, M. Elmadagli. Twinning activities in high-Mn austenitic steels under high-velocity compressive loading, Materials Science and Engineering A. 648 (2015) 104-112.
DOI: 10.1016/j.msea.2015.09.045
Google Scholar
[17]
E.G. Astafurova, M.S. Tukeeva, G.G. Zakharova, E.V. Melnikov, H.J. Maier, The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel, Materials characterization. 6 (2011).
DOI: 10.1016/j.matchar.2011.04.010
Google Scholar
[18]
W. Yan, L. Fang, Z. Zheng, K. Sun, Y. Xu, Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel, Tribology International. 5 (2009) 634-641.
DOI: 10.1016/j.triboint.2008.08.012
Google Scholar
[19]
W. Yan, L. Fang, K. Sun, Y. Xu, Thermodynamics of nanocrystilline formation in surface layer of Hadfield steel by shot peening, Materials Science and Engineering A. 445-446 (2007) 392-397.
DOI: 10.1016/j.msea.2006.09.061
Google Scholar
[20]
V.L. Volodin, L.B. Zuev, T.V. Volodin, V.E. Gromov, Structure, strength, and wear resistance of hadfield steel subjected to surface magnetic-pulse treatment, Steel in Translation. 42 (2009) 629-632.
DOI: 10.3103/s096709120908004x
Google Scholar