Electropulse Machining of Metals

Article Preview

Abstract:

There are results of industrial experiments in steel 35L treatment with electromagnetic pulses (EMP) available. The results evidentiate significant improvement in the complex of metal mechanical properties after such treatment. The theory, describing impulse action on metals is proposed herein.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-363

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.F. Balakirev, V.V. Krymsky, N.A. Shaburova, Electropulse treatment of metal melts, Chelybinsk, (2014).

Google Scholar

[2] V.S. Belkin, V.A. Bukharin, V.K. Dubrovin, ed. V.V. Krymsky, Nanosecond electromagnetic pulses and their application, Acad. Tatiana Lurie, Chelyabinsk, (2001).

Google Scholar

[3] L.G. Znamenskiy, V.V. Krymsky, B.A. Kulakov, Electropulse nanotechnology in casting processes, Monograph, Izd CSTI, Chelybinsk, (2003).

Google Scholar

[4] N.A. Shaburova, Impact nanosecond electromagnetic pulses to melt ferrous metals, Bulletin of South Ural State University, series Mathematics, physics and chemistry,. 62 (2006) 152-156.

Google Scholar

[5] V.F. Balakirev, V.V. Krymsky, N.A. Shaburova, Nanoimpulsnye technology, Izd CSTI, Chelybinsk, (2012).

Google Scholar

[6] Liu Qingmei, Zhang Yong, Song Yaoling, Qi Feipeng, Zhai Qijie, Influence of ultrasonic vibration on mechanical properties and microstructure of 1Cr18Ni9Ti stainless steel, Materials and Design. 28 (2007) 1949-(1952).

DOI: 10.1016/j.matdes.2006.04.025

Google Scholar

[7] Qingmei Liu, Qijie Zhai, Feipeng Qi, Yong Zhang, Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel, Materials Letters. 61 (2007) 2422-2425.

DOI: 10.1016/j.matlet.2006.09.027

Google Scholar

[8] M. Khosro Aghayani, B. Niroumand, Effects of ultrasonic treatment on microstructure and tensile strength of AZ91 magnesium alloy, Journal of Alloys and Compounds. 509 (2011) 114-122.

DOI: 10.1016/j.jallcom.2010.08.139

Google Scholar

[9] Yao Lei, Hao Hai, JI Shou-hua, Fang Can-feng, Zhang Xing-guo, Effects of ultrasonic vibration on solidification structure and properties of Mg-8Li-3Al alloy, Trans. Nonferrous Met. Soc. China 21 (2011) 1241-1246.

DOI: 10.1016/s1003-6326(11)60848-0

Google Scholar

[10] Y. Krautkremer, G. Krautkremer, Ultrasonic testing of materials, Metallurgy Publ., Moscow, (1991).

Google Scholar

[11] R.W. Pohl, Einfűhrung in die Physik, 3Bde, Springer, Berlin, (1962).

Google Scholar

[12] H.L. Grubin, Direct electromagnetic generation of compressional waves in metals in static magnetic fields, IEEE. Trans SU, 17 (1970) 2207-432.

DOI: 10.1109/t-su.1970.29570

Google Scholar

[13] S.Y. Gurevich, Y. Petrov, E.V. Golubev, The spectra of acoustic pulses of normal waves (Lamb waves) excited by nanosecond laser pulses in metal plates, Abstracts of III Russian scientific-practical conference The destruction, control and diagnostics of materials and structures", "Ural Center for Academic Service,. (2007).

Google Scholar

[14] A.N. Vasiliev, V.D. Buchel'nikov, S.Y. Gurevich, Electromagnetic excitation of sound in metals, Publishing house SUSU, Chelyabinsk-M, (2001).

Google Scholar

[15] M.J. Arkin, I.F. Goncharov, V.S. Mirotvorsky, On the issue of contactless excitation of ultrasonic oscillations in molten metals, Acoustic magazine. 14 (1968) 344-350.

Google Scholar

[16] B.A. Baum, Metallic liquid, Metallurgy, Moscow, (1979).

Google Scholar

[17] Tables of physical quantities, Directory Under. Ed. IK Kikoin, Atomizdat, Moscow, (1976).

Google Scholar