Interaction of Hydrogen Atoms with Vacancies and Divacancies in bcc Iron

Article Preview

Abstract:

The paper presents the results of both ab initio and thermodynamic analysis of vacancy and divacancy formation and hydrogen interaction with them in alpha (bcc) iron. Ab initio calculations were performed by DFT method using LAPW in WIEN2k package. Monovacancy formation energy was found to be 2.15 eV and divacancy binding energy 0.22 ± 0.01 eV. Equlibrium fraction of vacancies bound into divacancies is of the order of 10–5 even at the highest temperatures close to bcc → fcc transformation point. Hydrogen has a strong interaction with monovacancies (vacancy-hydrogen binding energy decreasing from 0.60 to 0.31 eV for the first–fifth H atom inside a single vacancy) but has only a small effect on divacancy formation energy that is equal to 0.28, 0.19 and 0.17 for the case of joining of VH + V, VH + VH and VH2 + VH2, respectively. This means that the presence of hydrogen cannot significantly increase the equilibrium concentration of divacancies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

550-557

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metallurgical Transactions A. 11 (1980) 861-890. DOI: 10. 1007/BF02654700.

Google Scholar

[2] H. Wipf, Hydrogen in Metals III: Properties and Applications, Springer-Verlag, Berlin, (1997).

Google Scholar

[3] G.N. Kasatkin, Hydrogen in Structural Steels, Intermet Engineering Publ., Moscow, 2003. (in Russ. ).

Google Scholar

[4] F. Besenbacher, S.M. Myers, P. Nordlander, J.K. Nørskov, Multiple hydrogen occupancy of vacancies in Fe, J. Appl. Phys. 61 (1987) 1788-1794. DOI: 10. 1063/1. 338020.

DOI: 10.1063/1.338020

Google Scholar

[5] G.M. Pressouyre, I.M. Bernstein, A quantitative analysis of hydrogen trapping, Metallurgical Transactions A. 9 (1978) 1571-1580. DOI: 10. 1007/BF02661939.

DOI: 10.1007/bf02661939

Google Scholar

[6] V.G. Gavriljuk, V.N. Bugaev, Yu.N. Petrov, A.V. Tarasenko, B.Z. Yanchitski, Scripta Materialia. 34 (1996).

DOI: 10.1016/1359-6462(95)00580-3

Google Scholar

[7] R.A. Ryabov, P.V. Gel'd, To the question of flake formation mechanism, Metally. 6 (1975) 114-116. (in Russ. ).

Google Scholar

[8] X.C. Ren, Q.J. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su, L.J. Qiao, A nucleation mechanism of hydrogen blister in metals and alloys, Metallurgical and Materials Transactions A. 39 (2008) 87-97. DOI: 10. 1007/s11661-007-9391-3.

DOI: 10.1007/s11661-007-9391-3

Google Scholar

[9] K. Schwarz, P. Blaha, Solid state calculations using WIEN2k, Comput. Mater. Sci. 28 (2003) 259. DOI: 10. 1016/S0927-0256(03)00112-5.

DOI: 10.1016/s0927-0256(03)00112-5

Google Scholar

[10] A.V. Ursaeva, G.E. Ruzanova, A.A. Mirzoev, Selection of optimal parameters for formation the most accurate model of bcc iron, Bull. of the South Ural State Univ. Ser. Mathematics, Mechanics, Physics. 9 (2010) 97-101. (in Russ. ).

Google Scholar

[11] D.E. Jiang, E.A. Carter, Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Phys. Rev. B70 (2004). DOI: 10. 1103/PhysRevB. 70. 064102.

DOI: 10.1103/physrevb.70.064102

Google Scholar

[12] D.A. Mirzaev, A.A. Mirzoev, K. Yu. Okishev, A.D. Shaburov, G.E. Ruzanova, A.V. Ursaeva, On equilibrium vacancy concentration in iron-hydrogen alloys, Bull. of the South Ural State Univ. Ser. Mathematics, Mechanics, Physics. 11 (2012).

DOI: 10.1134/s0031918x12100079

Google Scholar

[13] Y. Tateyama, T. Ohno, Stability and clusterization of hydrogen-vacancy complexes in a-Fe: An ab initio study, Phys. Rev. B67 (2003). DOI: 10. 1103/PhysRevB. 67. 174105.

Google Scholar

[14] W.A. Counts, C. Wolverton, R. Gibala, First-principles energetics of hydrogen traps in a-Fe: Point defects, Acta Materialia. 58 (2010) 4730-4741. DOI: 10. 1016/j. actamat. 2010. 05. 010.

DOI: 10.1016/j.actamat.2010.05.010

Google Scholar

[15] L. De Schepper, D. Segers, L. Dorikens-Vanpraet, M. Dorikens, G. Knuyt, L.M. Stals, P. Moser, Positron annihilation on pure and carbon-doped a-iron in thermal equilibrium, Phys. Rev. B27 (1983) 5257-5269. DOI: 10. 1103/PhysRevB. 27. 5257.

DOI: 10.1103/physrevb.27.5257

Google Scholar

[16] H. Ullmaier, Atomic Defects in Metals, Landolt–Börnstein, New Series, vol. III/25, Springer-Verlag, (1991).

Google Scholar

[17] M.A. Shtremel', Strength of Alloys, Part I, Lattice Defects, MISiS Publ., Moscow, 1999. (in Russ. ).

Google Scholar

[18] A. Seeger, Lattice vacancies in high-purity a-iron, Physica Status Solidi. A167 (1998) 289-311. DOI: 10. 1002/(SICI)1521-396X(199806)167: 2<289: AID-PSSA289>3. 0. CO; 2-V.

DOI: 10.1002/(sici)1521-396x(199806)167:2<289::aid-pssa289>3.0.co;2-v

Google Scholar

[19] O. Seydel, G. Frohberg, H. Wever, Quenching-in of vacancies in pure a-iron, Physica Status Solidi. A144 (1994) 69-79. DOI: 10. 1002/pssa. 2211440108.

DOI: 10.1002/pssa.2211440108

Google Scholar

[20] T. Ohnuma, N. Soneda, M. Iwasawa, First-principles calculations of vacancy–solute element interactions in body-centered cubic iron, Acta Mater. 57 (2009) 5947-5955. DOI: 10. 1016/j. actamat. 2009. 08. 020.

DOI: 10.1016/j.actamat.2009.08.020

Google Scholar

[21] J.R. Beeler, R.A. Johnson, Vacancy clusters in a-iron, Phys. Rev. 156 (1967) 677-684. DOI: 10. 1103/PhysRev. 156. 677.

DOI: 10.1103/physrev.156.677

Google Scholar

[22] M. Kabir, T.T. Lau, X. Lin, S. Yip, K.J.V. Vliet, Effects of vacancy-solute clusters on diffusivity in metastable Fe–C alloys, Phys. Rev. B82 (2010) 134112. DOI: 10. 1103/PhysRevB. 82. 134112.

DOI: 10.1103/physrevb.82.134112

Google Scholar

[23] F. Djurabekova, L. Malerba, R.C. Pasianot, P. Olsson, K. Nordlund, Kinetics versus thermodynamics in materials modeling: The case of the di-vacancy in iron, Philosophical Magazine. 90 (2010) 2585-2595. DOI: 10. 1080/14786431003662515.

DOI: 10.1080/14786431003662515

Google Scholar

[24] C.S. Becquart, C. Domain, Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 202 (2003).

DOI: 10.1016/s0168-583x(02)01828-1

Google Scholar

[25] K. Masuda, Vacancies and small vacancy clusters in BCC transition metals: Calculation of binding energy, atomic relaxation and electronic and vibrational densities of states, Journal de Physique. 43 (1982).

DOI: 10.1051/jphys:01982004306092100

Google Scholar

[26] P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals, Phys. Rev. B76 (2007) 054107. DOI: 10. 1103/PhysRevB. 76. 054107.

DOI: 10.1103/physrevb.76.054107

Google Scholar

[27] V.I. Zubov, On the stasistical theory of point defects in pure crystals with strong anharmonicity, Physica Status Solidi. B106 (1981) K145-K148. DOI: 10. 1002/pssb. 2221060253.

DOI: 10.1002/pssb.2221060253

Google Scholar

[28] A.C. Damask, G.J. Dienes, Point Defects in Metals, Gordon and Breach Science Publ., N. -Y. –London, (1963).

Google Scholar

[29] A.G. Lesnik, Models of Interatomic Interaction in Statistical Theory of Alloys, Fizmatgiz Publ., Moscow, 1962. (in Russ. ).

Google Scholar

[30] H. -E. Schaefer, K. Maier, M. Weller, D. Herlach, A. Seeger, J. Diehl, Vacancy formation in iron investigated by positron annihilation in thermal equilibrium, Scripta Metallurgica. 11 (1977) 803-809. DOI: 10. 1016/0036-9748(77)90079-5.

DOI: 10.1016/0036-9748(77)90079-5

Google Scholar

[31] S.M. Kim, W.J.L. Buyers, Vacancy formation energy in iron by positron annihilation, J. Phys. F: Metal Physics. 8 (1978) L103-L108. DOI: 10. 1088/0305-4608/8/5/001.

DOI: 10.1088/0305-4608/8/5/001

Google Scholar

[32] A.V. Verkhovykh, A.A. Mirzoev, DFT modelling of interaction of hydrogen with bcc iron vacancies, Bull. of the South Ural State Univ. Ser. Mathematics, Mechanics, Physics. 7 (2015) 48-56. (in Russ. ).

Google Scholar

[33] A.A. Mirzoev, D.A. Mirzaev, A.V. Verkhovykh, Hydrogen-vacancy interactions in ferrmagnetic and paramagnetic bcc iron: Ab initio calculations, Physica Status Solidi. B252 (2015) 1966-1970. DOI: 10. 1002/pssb. 201451757.

DOI: 10.1002/pssb.201451757

Google Scholar

[34] A.V. Ursaeva, A.A. Mirzoev, G.E. Ruzanova, Ab initio modelling of hydrogen-vacancy (VHn) complexes in bcc iron, Bull. of the South Ural State Univ. Ser. Metallurgy. 36 (2011) 51–55. (in Russ. ).

Google Scholar

[35] D.A. Mirzaev, A.A. Mirzoev, K. Yu. Okishev, A.D. Shaburov, G.E. Ruzanova, A.V. Ursaeva, Formation of hydrogen-vacancy complexes in alpha iron, The Physics of Metals and Metallography. 113 (2012) 923-926. DOI: 10. 1134/S0031918X12100079.

DOI: 10.1134/s0031918x12100079

Google Scholar

[36] D.A. Mirzaev, A.A. Mirzoev, K. Yu. Okishev, A.V. Verkhovykh, Hydrogen-vacancy interaction in bcc iron: Ab initio calculations and thermodynamics, Molecular Physics. 112 (2014) 1745-1754. DOI: 10. 1080/00268976. 2013. 861087.

DOI: 10.1080/00268976.2013.861087

Google Scholar

[37] K. Ohsawa, K. Eguchi, H. Watanabe, M. Yamaguchi, M. Yagi, Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals, Phys. Rev. B85 (2012) 094102. DOI: 10. 1103/PhysRevB. 85. 094102.

DOI: 10.1103/physrevb.85.094102

Google Scholar

[38] M. Iwamoto, Y. Fukai, Superabundant vacancy formation in iron under high hydrogen pressures: Thermal desorption spectroscopy, Mater. Trans. JIM. 40 (1999) 606-611. DOI: 10. 2320/matertrans1989. 40. 606.

DOI: 10.2320/matertrans1989.40.606

Google Scholar