[1]
J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metallurgical Transactions A. 11 (1980) 861-890. DOI: 10. 1007/BF02654700.
Google Scholar
[2]
H. Wipf, Hydrogen in Metals III: Properties and Applications, Springer-Verlag, Berlin, (1997).
Google Scholar
[3]
G.N. Kasatkin, Hydrogen in Structural Steels, Intermet Engineering Publ., Moscow, 2003. (in Russ. ).
Google Scholar
[4]
F. Besenbacher, S.M. Myers, P. Nordlander, J.K. Nørskov, Multiple hydrogen occupancy of vacancies in Fe, J. Appl. Phys. 61 (1987) 1788-1794. DOI: 10. 1063/1. 338020.
DOI: 10.1063/1.338020
Google Scholar
[5]
G.M. Pressouyre, I.M. Bernstein, A quantitative analysis of hydrogen trapping, Metallurgical Transactions A. 9 (1978) 1571-1580. DOI: 10. 1007/BF02661939.
DOI: 10.1007/bf02661939
Google Scholar
[6]
V.G. Gavriljuk, V.N. Bugaev, Yu.N. Petrov, A.V. Tarasenko, B.Z. Yanchitski, Scripta Materialia. 34 (1996).
DOI: 10.1016/1359-6462(95)00580-3
Google Scholar
[7]
R.A. Ryabov, P.V. Gel'd, To the question of flake formation mechanism, Metally. 6 (1975) 114-116. (in Russ. ).
Google Scholar
[8]
X.C. Ren, Q.J. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su, L.J. Qiao, A nucleation mechanism of hydrogen blister in metals and alloys, Metallurgical and Materials Transactions A. 39 (2008) 87-97. DOI: 10. 1007/s11661-007-9391-3.
DOI: 10.1007/s11661-007-9391-3
Google Scholar
[9]
K. Schwarz, P. Blaha, Solid state calculations using WIEN2k, Comput. Mater. Sci. 28 (2003) 259. DOI: 10. 1016/S0927-0256(03)00112-5.
DOI: 10.1016/s0927-0256(03)00112-5
Google Scholar
[10]
A.V. Ursaeva, G.E. Ruzanova, A.A. Mirzoev, Selection of optimal parameters for formation the most accurate model of bcc iron, Bull. of the South Ural State Univ. Ser. Mathematics, Mechanics, Physics. 9 (2010) 97-101. (in Russ. ).
Google Scholar
[11]
D.E. Jiang, E.A. Carter, Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Phys. Rev. B70 (2004). DOI: 10. 1103/PhysRevB. 70. 064102.
DOI: 10.1103/physrevb.70.064102
Google Scholar
[12]
D.A. Mirzaev, A.A. Mirzoev, K. Yu. Okishev, A.D. Shaburov, G.E. Ruzanova, A.V. Ursaeva, On equilibrium vacancy concentration in iron-hydrogen alloys, Bull. of the South Ural State Univ. Ser. Mathematics, Mechanics, Physics. 11 (2012).
DOI: 10.1134/s0031918x12100079
Google Scholar
[13]
Y. Tateyama, T. Ohno, Stability and clusterization of hydrogen-vacancy complexes in a-Fe: An ab initio study, Phys. Rev. B67 (2003). DOI: 10. 1103/PhysRevB. 67. 174105.
Google Scholar
[14]
W.A. Counts, C. Wolverton, R. Gibala, First-principles energetics of hydrogen traps in a-Fe: Point defects, Acta Materialia. 58 (2010) 4730-4741. DOI: 10. 1016/j. actamat. 2010. 05. 010.
DOI: 10.1016/j.actamat.2010.05.010
Google Scholar
[15]
L. De Schepper, D. Segers, L. Dorikens-Vanpraet, M. Dorikens, G. Knuyt, L.M. Stals, P. Moser, Positron annihilation on pure and carbon-doped a-iron in thermal equilibrium, Phys. Rev. B27 (1983) 5257-5269. DOI: 10. 1103/PhysRevB. 27. 5257.
DOI: 10.1103/physrevb.27.5257
Google Scholar
[16]
H. Ullmaier, Atomic Defects in Metals, Landolt–Börnstein, New Series, vol. III/25, Springer-Verlag, (1991).
Google Scholar
[17]
M.A. Shtremel', Strength of Alloys, Part I, Lattice Defects, MISiS Publ., Moscow, 1999. (in Russ. ).
Google Scholar
[18]
A. Seeger, Lattice vacancies in high-purity a-iron, Physica Status Solidi. A167 (1998) 289-311. DOI: 10. 1002/(SICI)1521-396X(199806)167: 2<289: AID-PSSA289>3. 0. CO; 2-V.
DOI: 10.1002/(sici)1521-396x(199806)167:2<289::aid-pssa289>3.0.co;2-v
Google Scholar
[19]
O. Seydel, G. Frohberg, H. Wever, Quenching-in of vacancies in pure a-iron, Physica Status Solidi. A144 (1994) 69-79. DOI: 10. 1002/pssa. 2211440108.
DOI: 10.1002/pssa.2211440108
Google Scholar
[20]
T. Ohnuma, N. Soneda, M. Iwasawa, First-principles calculations of vacancy–solute element interactions in body-centered cubic iron, Acta Mater. 57 (2009) 5947-5955. DOI: 10. 1016/j. actamat. 2009. 08. 020.
DOI: 10.1016/j.actamat.2009.08.020
Google Scholar
[21]
J.R. Beeler, R.A. Johnson, Vacancy clusters in a-iron, Phys. Rev. 156 (1967) 677-684. DOI: 10. 1103/PhysRev. 156. 677.
DOI: 10.1103/physrev.156.677
Google Scholar
[22]
M. Kabir, T.T. Lau, X. Lin, S. Yip, K.J.V. Vliet, Effects of vacancy-solute clusters on diffusivity in metastable Fe–C alloys, Phys. Rev. B82 (2010) 134112. DOI: 10. 1103/PhysRevB. 82. 134112.
DOI: 10.1103/physrevb.82.134112
Google Scholar
[23]
F. Djurabekova, L. Malerba, R.C. Pasianot, P. Olsson, K. Nordlund, Kinetics versus thermodynamics in materials modeling: The case of the di-vacancy in iron, Philosophical Magazine. 90 (2010) 2585-2595. DOI: 10. 1080/14786431003662515.
DOI: 10.1080/14786431003662515
Google Scholar
[24]
C.S. Becquart, C. Domain, Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 202 (2003).
DOI: 10.1016/s0168-583x(02)01828-1
Google Scholar
[25]
K. Masuda, Vacancies and small vacancy clusters in BCC transition metals: Calculation of binding energy, atomic relaxation and electronic and vibrational densities of states, Journal de Physique. 43 (1982).
DOI: 10.1051/jphys:01982004306092100
Google Scholar
[26]
P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals, Phys. Rev. B76 (2007) 054107. DOI: 10. 1103/PhysRevB. 76. 054107.
DOI: 10.1103/physrevb.76.054107
Google Scholar
[27]
V.I. Zubov, On the stasistical theory of point defects in pure crystals with strong anharmonicity, Physica Status Solidi. B106 (1981) K145-K148. DOI: 10. 1002/pssb. 2221060253.
DOI: 10.1002/pssb.2221060253
Google Scholar
[28]
A.C. Damask, G.J. Dienes, Point Defects in Metals, Gordon and Breach Science Publ., N. -Y. –London, (1963).
Google Scholar
[29]
A.G. Lesnik, Models of Interatomic Interaction in Statistical Theory of Alloys, Fizmatgiz Publ., Moscow, 1962. (in Russ. ).
Google Scholar
[30]
H. -E. Schaefer, K. Maier, M. Weller, D. Herlach, A. Seeger, J. Diehl, Vacancy formation in iron investigated by positron annihilation in thermal equilibrium, Scripta Metallurgica. 11 (1977) 803-809. DOI: 10. 1016/0036-9748(77)90079-5.
DOI: 10.1016/0036-9748(77)90079-5
Google Scholar
[31]
S.M. Kim, W.J.L. Buyers, Vacancy formation energy in iron by positron annihilation, J. Phys. F: Metal Physics. 8 (1978) L103-L108. DOI: 10. 1088/0305-4608/8/5/001.
DOI: 10.1088/0305-4608/8/5/001
Google Scholar
[32]
A.V. Verkhovykh, A.A. Mirzoev, DFT modelling of interaction of hydrogen with bcc iron vacancies, Bull. of the South Ural State Univ. Ser. Mathematics, Mechanics, Physics. 7 (2015) 48-56. (in Russ. ).
Google Scholar
[33]
A.A. Mirzoev, D.A. Mirzaev, A.V. Verkhovykh, Hydrogen-vacancy interactions in ferrmagnetic and paramagnetic bcc iron: Ab initio calculations, Physica Status Solidi. B252 (2015) 1966-1970. DOI: 10. 1002/pssb. 201451757.
DOI: 10.1002/pssb.201451757
Google Scholar
[34]
A.V. Ursaeva, A.A. Mirzoev, G.E. Ruzanova, Ab initio modelling of hydrogen-vacancy (VHn) complexes in bcc iron, Bull. of the South Ural State Univ. Ser. Metallurgy. 36 (2011) 51–55. (in Russ. ).
Google Scholar
[35]
D.A. Mirzaev, A.A. Mirzoev, K. Yu. Okishev, A.D. Shaburov, G.E. Ruzanova, A.V. Ursaeva, Formation of hydrogen-vacancy complexes in alpha iron, The Physics of Metals and Metallography. 113 (2012) 923-926. DOI: 10. 1134/S0031918X12100079.
DOI: 10.1134/s0031918x12100079
Google Scholar
[36]
D.A. Mirzaev, A.A. Mirzoev, K. Yu. Okishev, A.V. Verkhovykh, Hydrogen-vacancy interaction in bcc iron: Ab initio calculations and thermodynamics, Molecular Physics. 112 (2014) 1745-1754. DOI: 10. 1080/00268976. 2013. 861087.
DOI: 10.1080/00268976.2013.861087
Google Scholar
[37]
K. Ohsawa, K. Eguchi, H. Watanabe, M. Yamaguchi, M. Yagi, Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals, Phys. Rev. B85 (2012) 094102. DOI: 10. 1103/PhysRevB. 85. 094102.
DOI: 10.1103/physrevb.85.094102
Google Scholar
[38]
M. Iwamoto, Y. Fukai, Superabundant vacancy formation in iron under high hydrogen pressures: Thermal desorption spectroscopy, Mater. Trans. JIM. 40 (1999) 606-611. DOI: 10. 2320/matertrans1989. 40. 606.
DOI: 10.2320/matertrans1989.40.606
Google Scholar