[1]
I. Harward, Y. Nie, D. Chen, J. Baptist, M.J. Shaw, E.J. Liskova, S. Visnovsky, P. Siroky, M. Lesnak, J. Pistora, Z. Celinski, Physical properties of Al doped Ba hexagonal ferrite thin films, J. Appl. Phys. 113 (2013) 043903.
DOI: 10.1063/1.4788699
Google Scholar
[2]
A.B. Ustinov, A.S. Tatarenko, G. Srinivasan, A.M. Balbashov, Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices, J. Appl. Phys. 105 (2009) 105-108.
DOI: 10.1063/1.3067759
Google Scholar
[3]
A.B. Ustinov, G. Srinivasan, Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers, Appl. Phys. Lett. 93 (2008) 93-95.
DOI: 10.1063/1.2996585
Google Scholar
[4]
L. Fu, X. Liu, Y. Zhang, V.P. Dravid, C.A. Mirkin, Nanopatterning of Hard, Magnetic Nanostructures via Dip-Pen Nanolithography and a Sol-Based Ink, Nano Letters. 3 (2003) 757-760.
DOI: 10.1021/nl034172g
Google Scholar
[5]
M.H. Shams, A.S.H. Rozatian, M.H. Yousefi, J. Valíček, V. Šepelák, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and highfrequency ferromagnetic properties of barium hexaferrite, J. Magn. Magn. Mater. 399 (2016) 10-18.
DOI: 10.1016/j.jmmm.2015.08.099
Google Scholar
[6]
C. Wu, Z. Yu, Y. Yang, K. Sun, J. Nie, Y. Liu, X. Jiang, Z. Lan, Computational and experimental study on the cation distribution of La-Cu substituted barium hexaferrites, J. Alloys Compd. 664 (2016) 406-410.
DOI: 10.1016/j.jallcom.2015.12.251
Google Scholar
[7]
S.S.S. Afghahi, M. Jafarian, Y. Atassi, Microstructural and magnetic studies on BaMgxZnxX2xFe12-4xO19 (X = Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band, J. Magn. Magn. Mater. 406 (2016) 184-191.
DOI: 10.1016/j.jmmm.2016.01.020
Google Scholar
[8]
Y.Y. Song, C.L. Ordóñez-Romero, M. Wu, Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites, Appl. Phys. Lett. 95 (2009) 142506.
DOI: 10.1063/1.3246170
Google Scholar
[9]
W. Zhang, B. Peng, W. Zhang, S. Zhou, H. Schmidt, Ultra large coercivity in barium ferrite thin films prepared by magnetron sputtering, J. Magn. Magn. Mater. 322 (2010) 1859-1862.
DOI: 10.1016/j.jmmm.2009.12.041
Google Scholar
[10]
A.M. Balbashov, S.K. Egorov, Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating, J. Crystal Growth. 52 (1981) 498-504.
DOI: 10.1016/0022-0248(81)90328-6
Google Scholar
[11]
M.A. Wittenauer, J.A. Nyenhuis, A.I. Schindler, H. Sato, F.J. Friedlaender, J. Truedson, R. Karim, C.E. Patton, Growth and characterization of high purity single crystalsof barium ferrite, J. Crystal Growth. 130 (1993) 533-542.
DOI: 10.1016/0022-0248(93)90542-5
Google Scholar
[12]
K. Watanabe, Growth of minute barium ferrite single crystals from a Na2O-B2O3 flux system, J. Crystal Growth. 169 (1996) 509-518.
DOI: 10.1016/s0022-0248(96)00436-8
Google Scholar
[13]
J. Aidelberg, J. Flicstein, M. Schieber, Cellular growth in BaFe12O19 crystals solidified from flux solvent, J. Crystal Growth. 21 (1974) 195-202.
DOI: 10.1016/0022-0248(74)90005-0
Google Scholar
[14]
N.M. Borisova, Z.V. Golubenko, T.G. Kuz'micheva, L.P. Ol'khovik, V.P. Shabatin, Optimization principles for preparation methods and properties of fine ferrite materials, J. Magn. Magn. Mater. 114 (1992) 317-328.
DOI: 10.1016/0304-8853(92)90274-r
Google Scholar
[15]
L. Shlyk, S. Strobel, E. Rose, R. Niewa, BaZnRu5O11: Novel Compound with Frustrated Magnetic Lattice Based on Distorted Kagome Networks, Solid State Sci. 14 (2012) 281-286.
DOI: 10.1016/j.solidstatesciences.2011.11.033
Google Scholar
[16]
L. Shlyk, S. Strobel, Th. Schleid, R. Niewa, Ruthenate-ferrites AMRu5O11 (A = Sr, Ba; M = Ni, Zn): Distortion of kagome nets via metal–metal bonding, Z. Kristallogr. 227 (2012) 545-551.
DOI: 10.1524/zkri.2012.1450
Google Scholar
[17]
F. Licci, T. Besagni, Growth and characterization of Ba(Mn, Ti)xFe12-xO19 crystals, Mat. Res. Bull. 22 (1987) 467-476.
DOI: 10.1016/0025-5408(87)90256-x
Google Scholar
[18]
A. Tauber, J.A. Kuhn, R.O. Savage, Single-Crystal Ferroxdure, BaFe12−2x3+Irx4+Znx2+O19, with strong planar anisotropy, J. Appl. Phys. 34 (1963) 1265-1267.
Google Scholar
[19]
A.H. Mones, E. Banks, Cation substitutions in BaFe12O19, J. Phys. Chem. Solids. 4 (1958) 217-222.
DOI: 10.1016/0022-3697(58)90119-7
Google Scholar
[20]
J.M. Desvignes, H. Le Gall, M. Labeyrie, J.C. Mage, T.M. Robinson, Improvement of hexaferrite crystal growth: reproductivity and characterization, J. Phys. Colloq. 46 (1985) C6-331-C6-334.
DOI: 10.1051/jphyscol:1985660
Google Scholar
[21]
R.J. Gambino, F. Leonhard, Growth of barium ferrite single crystals, J. Am. Ceram. Soc. 44 (1961) 221-224.
DOI: 10.1111/j.1151-2916.1961.tb15364.x
Google Scholar
[22]
D.E. Bugaris, H.C. zurLoye, Materials Discovery by Flux Crystal Growth: Quaternary and Higher Order Oxides, Angew. Chem., Int. Ed. 51 (2012) 3780-3811.
DOI: 10.1002/anie.201102676
Google Scholar
[23]
R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57 (2012) 1191–1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[24]
D.A. Vinnik, Resistive furnace for single crystals growth, Butlerov Communications. 39 (2014) 153-154.
Google Scholar
[25]
D.A. Vinnik, L.S. Mashkovtseva, D.A. Zherebtsov, V.V. Dyachuk, G.G. Mikhailov, Growing of barium ferrite crystals from a solution, Bull. S. Ural State Univ. Metall. Ser. 253 (2011) 41–44.
Google Scholar
[26]
D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, A.K. Yakushechkina, A.S. Semisalova, N.S. Perov, L.I. Isaenko, R. Niewa, Tungsten substituted BaFe12O19 single crystal growth and characterization, Mat. Chem. Phys. 155 (2015) 99-103.
DOI: 10.1016/j.matchemphys.2015.02.005
Google Scholar
[27]
D.A. Vinnik, A. B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals, Ceramics International. 41 (2015).
DOI: 10.1016/j.ceramint.2015.06.105
Google Scholar
[28]
D.A. Vinnik, A.S. Semisalova, L.S. Mashkovtseva, A.K. Yakushechkina, S. Nemrava, S.A. Gudkova, D.A. Zherebtsov, N.S. Perov, L.I. Isaenko, R. Niewa, Growth, structural and magnetic characterization of Zn-substituted barium hexaferritesingle crystals, Mat. Chem. Phys. 163 (2015).
DOI: 10.1016/j.matchemphys.2015.07.059
Google Scholar
[29]
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, ActaCrystallogr. A32 (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[30]
W.D. Townes, J.H. Fang, A.J. Perrotta, The crystal structure and refinement of ferromagnetic barium ferrite, BaFe12O19, Z. Kristallogr. 125 (1967) 437-449.
DOI: 10.1524/zkri.1967.125.125.437
Google Scholar
[31]
F. -Z. Mou, J. -G. Guan, Z. -G. Sun, X. -A. Fan, G. -X. Tong, In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays, J. Solid State Chem. 183 (2010) 736-743.
DOI: 10.1016/j.jssc.2010.01.016
Google Scholar
[32]
V. Adelsköld, X-ray studies on magneto-plumbite, PbO. 6Fe2O3, and other substances resembling 'beta-alumina', Na2O. 11Al2O3, Ark. Kemi Min. Geol. Series A-12. 29 (1938) 1-9.
Google Scholar
[33]
P.B. Moore, P.K.S. Gupta, Y. Le Page, Magnetoplumbite, PbFe12O19: Refinement and lone-pair splitting, Am. Mineral. 74 (1989) 1186-1194.
Google Scholar