Barium Hexaferrite Single Crystal Growth Using PbO and Na2O Based Flux

Article Preview

Abstract:

Barium hexaferriteBaFe12O19single crystals hexagonal platelet shape and sizes of up to 8 mm were grown of lead oxide and sodium oxide based fluxes at 1260 °C. The unit cell parameters of single crystals grown using different fluxes is in good agreement with literature data. Substitution of Ba by Pb was detected, but with only negligible influence on unit cell parameters and Curie temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-69

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Harward, Y. Nie, D. Chen, J. Baptist, M.J. Shaw, E.J. Liskova, S. Visnovsky, P. Siroky, M. Lesnak, J. Pistora, Z. Celinski, Physical properties of Al doped Ba hexagonal ferrite thin films, J. Appl. Phys. 113 (2013) 043903.

DOI: 10.1063/1.4788699

Google Scholar

[2] A.B. Ustinov, A.S. Tatarenko, G. Srinivasan, A.M. Balbashov, Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices, J. Appl. Phys. 105 (2009) 105-108.

DOI: 10.1063/1.3067759

Google Scholar

[3] A.B. Ustinov, G. Srinivasan, Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers, Appl. Phys. Lett. 93 (2008) 93-95.

DOI: 10.1063/1.2996585

Google Scholar

[4] L. Fu, X. Liu, Y. Zhang, V.P. Dravid, C.A. Mirkin, Nanopatterning of Hard, Magnetic Nanostructures via Dip-Pen Nanolithography and a Sol-Based Ink, Nano Letters. 3 (2003) 757-760.

DOI: 10.1021/nl034172g

Google Scholar

[5] M.H. Shams, A.S.H. Rozatian, M.H. Yousefi, J. Valíček, V. Šepelák, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and highfrequency ferromagnetic properties of barium hexaferrite, J. Magn. Magn. Mater. 399 (2016) 10-18.

DOI: 10.1016/j.jmmm.2015.08.099

Google Scholar

[6] C. Wu, Z. Yu, Y. Yang, K. Sun, J. Nie, Y. Liu, X. Jiang, Z. Lan, Computational and experimental study on the cation distribution of La-Cu substituted barium hexaferrites, J. Alloys Compd. 664 (2016) 406-410.

DOI: 10.1016/j.jallcom.2015.12.251

Google Scholar

[7] S.S.S. Afghahi, M. Jafarian, Y. Atassi, Microstructural and magnetic studies on BaMgxZnxX2xFe12-4xO19 (X = Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band, J. Magn. Magn. Mater. 406 (2016) 184-191.

DOI: 10.1016/j.jmmm.2016.01.020

Google Scholar

[8] Y.Y. Song, C.L. Ordóñez-Romero, M. Wu, Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites, Appl. Phys. Lett. 95 (2009) 142506.

DOI: 10.1063/1.3246170

Google Scholar

[9] W. Zhang, B. Peng, W. Zhang, S. Zhou, H. Schmidt, Ultra large coercivity in barium ferrite thin films prepared by magnetron sputtering, J. Magn. Magn. Mater. 322 (2010) 1859-1862.

DOI: 10.1016/j.jmmm.2009.12.041

Google Scholar

[10] A.M. Balbashov, S.K. Egorov, Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating, J. Crystal Growth. 52 (1981) 498-504.

DOI: 10.1016/0022-0248(81)90328-6

Google Scholar

[11] M.A. Wittenauer, J.A. Nyenhuis, A.I. Schindler, H. Sato, F.J. Friedlaender, J. Truedson, R. Karim, C.E. Patton, Growth and characterization of high purity single crystalsof barium ferrite, J. Crystal Growth. 130 (1993) 533-542.

DOI: 10.1016/0022-0248(93)90542-5

Google Scholar

[12] K. Watanabe, Growth of minute barium ferrite single crystals from a Na2O-B2O3 flux system, J. Crystal Growth. 169 (1996) 509-518.

DOI: 10.1016/s0022-0248(96)00436-8

Google Scholar

[13] J. Aidelberg, J. Flicstein, M. Schieber, Cellular growth in BaFe12O19 crystals solidified from flux solvent, J. Crystal Growth. 21 (1974) 195-202.

DOI: 10.1016/0022-0248(74)90005-0

Google Scholar

[14] N.M. Borisova, Z.V. Golubenko, T.G. Kuz'micheva, L.P. Ol'khovik, V.P. Shabatin, Optimization principles for preparation methods and properties of fine ferrite materials, J. Magn. Magn. Mater. 114 (1992) 317-328.

DOI: 10.1016/0304-8853(92)90274-r

Google Scholar

[15] L. Shlyk, S. Strobel, E. Rose, R. Niewa, BaZnRu5O11: Novel Compound with Frustrated Magnetic Lattice Based on Distorted Kagome Networks, Solid State Sci. 14 (2012) 281-286.

DOI: 10.1016/j.solidstatesciences.2011.11.033

Google Scholar

[16] L. Shlyk, S. Strobel, Th. Schleid, R. Niewa, Ruthenate-ferrites AMRu5O11 (A = Sr, Ba; M = Ni, Zn): Distortion of kagome nets via metal–metal bonding, Z. Kristallogr. 227 (2012) 545-551.

DOI: 10.1524/zkri.2012.1450

Google Scholar

[17] F. Licci, T. Besagni, Growth and characterization of Ba(Mn, Ti)xFe12-xO19 crystals, Mat. Res. Bull. 22 (1987) 467-476.

DOI: 10.1016/0025-5408(87)90256-x

Google Scholar

[18] A. Tauber, J.A. Kuhn, R.O. Savage, Single-Crystal Ferroxdure, BaFe12−2x3+Irx4+Znx2+O19, with strong planar anisotropy, J. Appl. Phys. 34 (1963) 1265-1267.

Google Scholar

[19] A.H. Mones, E. Banks, Cation substitutions in BaFe12O19, J. Phys. Chem. Solids. 4 (1958) 217-222.

DOI: 10.1016/0022-3697(58)90119-7

Google Scholar

[20] J.M. Desvignes, H. Le Gall, M. Labeyrie, J.C. Mage, T.M. Robinson, Improvement of hexaferrite crystal growth: reproductivity and characterization, J. Phys. Colloq. 46 (1985) C6-331-C6-334.

DOI: 10.1051/jphyscol:1985660

Google Scholar

[21] R.J. Gambino, F. Leonhard, Growth of barium ferrite single crystals, J. Am. Ceram. Soc. 44 (1961) 221-224.

DOI: 10.1111/j.1151-2916.1961.tb15364.x

Google Scholar

[22] D.E. Bugaris, H.C. zurLoye, Materials Discovery by Flux Crystal Growth: Quaternary and Higher Order Oxides, Angew. Chem., Int. Ed. 51 (2012) 3780-3811.

DOI: 10.1002/anie.201102676

Google Scholar

[23] R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57 (2012) 1191–1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[24] D.A. Vinnik, Resistive furnace for single crystals growth, Butlerov Communications. 39 (2014) 153-154.

Google Scholar

[25] D.A. Vinnik, L.S. Mashkovtseva, D.A. Zherebtsov, V.V. Dyachuk, G.G. Mikhailov, Growing of barium ferrite crystals from a solution, Bull. S. Ural State Univ. Metall. Ser. 253 (2011) 41–44.

Google Scholar

[26] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, A.K. Yakushechkina, A.S. Semisalova, N.S. Perov, L.I. Isaenko, R. Niewa, Tungsten substituted BaFe12O19 single crystal growth and characterization, Mat. Chem. Phys. 155 (2015) 99-103.

DOI: 10.1016/j.matchemphys.2015.02.005

Google Scholar

[27] D.A. Vinnik, A. B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals, Ceramics International. 41 (2015).

DOI: 10.1016/j.ceramint.2015.06.105

Google Scholar

[28] D.A. Vinnik, A.S. Semisalova, L.S. Mashkovtseva, A.K. Yakushechkina, S. Nemrava, S.A. Gudkova, D.A. Zherebtsov, N.S. Perov, L.I. Isaenko, R. Niewa, Growth, structural and magnetic characterization of Zn-substituted barium hexaferritesingle crystals, Mat. Chem. Phys. 163 (2015).

DOI: 10.1016/j.matchemphys.2015.07.059

Google Scholar

[29] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, ActaCrystallogr. A32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[30] W.D. Townes, J.H. Fang, A.J. Perrotta, The crystal structure and refinement of ferromagnetic barium ferrite, BaFe12O19, Z. Kristallogr. 125 (1967) 437-449.

DOI: 10.1524/zkri.1967.125.125.437

Google Scholar

[31] F. -Z. Mou, J. -G. Guan, Z. -G. Sun, X. -A. Fan, G. -X. Tong, In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays, J. Solid State Chem. 183 (2010) 736-743.

DOI: 10.1016/j.jssc.2010.01.016

Google Scholar

[32] V. Adelsköld, X-ray studies on magneto-plumbite, PbO. 6Fe2O3, and other substances resembling 'beta-alumina', Na2O. 11Al2O3, Ark. Kemi Min. Geol. Series A-12. 29 (1938) 1-9.

Google Scholar

[33] P.B. Moore, P.K.S. Gupta, Y. Le Page, Magnetoplumbite, PbFe12O19: Refinement and lone-pair splitting, Am. Mineral. 74 (1989) 1186-1194.

Google Scholar