Improving Producing Characteristics of Constructions through FE-NI and FE-NI-CR Alloy Coatings with a Given Structure

Article Preview

Abstract:

The article considers innovative materials that are recommended to be used as a coating for reinforcement of bearing structures of high-rise buildings, bridges, tunnels and underground structures, and as a coating for storagetanks of crude oil instead of high-alloy steel grades 20H23N18, 08H18N10. Nanostructural alloy coating Fe-Ni (> 80% Fe) and alloy coating Fe-Ni-Cr (> 70% Fe), containing in addition to α-Fe a new phase ε-Fe with hexagonal close-packed lattice (GPUr) were obtained by high frequency periodic current at atmospheric pressure and room temperature. Existence of phase ε-Fe was confirmed by X-ray diffraction method, electron-probe test with an electronic probe, scanning atomic force microscopy. Phase transition α-Fe → ε-Fe was observed in the deposition process. A special feature of this phase is the presence of a nanocrystal structure. The main factors in the formation of the hexagonal system are the frequency and duty cycle. The maximum number of ε-Fe phase in the Fe-Ni alloy is 30% and the alloy Fe-Ni-Cr is 20%. This phase has an essential effect on the producing characteristics of the studied coatings. Due to the corrosion resistance in the chloride ions environment Fe-Ni alloy deposited by a high frequency alternating current is 7.5 times greater than high-alloy steel 20X23H18 and 08H18N10. Additionally the nanostructure plated with Fe-Ni-Cr alloy coating made possible to increase its microhardness. Fe-Ni alloy coating can be used as coatings for storage tanks of crude oil and Fe-Ni-Cr alloy coating can be recommended to harden the supporting structures of high-rise buildings, bridges, tunnels and underground structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-21

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. D Hamburg Elektrokhimicheskaya kristallizatsiya metallov i splavov, Yanus-K, Moskva, (1997).

Google Scholar

[2] V.V. Schmidt, I.G. Zhihareva Prognozirovanie struktury i svoystv troynykh elektroliticheskikh splavov, LAMBERT Academic Publishing, Saarbrucken, Germany, (2012).

Google Scholar

[3] L.P. Shulgin, Perenapryazhenie elektrodnykh reaktsiy v rastvorakh pri prokhozhdenii simmetrichnogo peremennogo toka, Zhurnal fizicheskaya khimiya. 3 (1979) 2048-(2051).

Google Scholar

[4] A.M. Ozerov, Nestatsionarnyy elektroliz, Nizhne-Volzhskoe iz-vo, Volgograd, (1972).

Google Scholar

[5] E.J. Nikiforov, A.B. Kilimnik, Zakony elektrokhimicheskogo povedeniya metallov pri primenenii peremennogo toka, Reporter TSU. 3 (2009) 36-39.

Google Scholar

[6] S.N. Vinogradov, Elektroosazhdenie splava tsink-nikel' na statsionarnykh i nestatsionarnykh rezhimakh elektroliza, 3 Vserossiyskaya prakticheskaya konferentsiya Zashchitnye pokrytiya v mashinostroenii i priborostroenii, Penza. (2002) 27-28.

Google Scholar

[7] T. Takahashi, W.A. Bassett, High-Pressure Polymorph of Iron, Science. 145 (1964) 483-486.

DOI: 10.1126/science.145.3631.483

Google Scholar

[8] W.A. Bassett and E. Huang Mechanism of the body-centered cubic-hexagonal close- packed phase transition in iron, Science. 238 (1987) 780-784.

DOI: 10.1126/science.238.4828.780

Google Scholar

[9] D. Bancroft, E.L. Petersen, S. Minshall, Polymorphism of iron at high pressure, J. Appl. Phys. 27 (1956) 291-297.

Google Scholar

[10] P.M. Gils, M.N. Longenbach, A.P. Marder, Structure of shock and rarefaction waves in iron, J. Appl. Phys. 42 (1971) 4290-4299.

Google Scholar

[11] T.R. Loree, C.M. Fowler, E.G. Zucas, F.S. Minshall. Polymorphism of shock loaded Fe -Mn and Fe-Ni alloys, Science. 153 (1966) 1277-1278.

DOI: 10.1126/science.153.3741.1277

Google Scholar

[12] W. F. Claussen, A. A. Giardini and E. C. Lloyd, Eds. In High-pressure measurement, Butterworth, Washington, D.C. (1963) 125-150.

Google Scholar

[13] P. C. Johnson, B. A. Stein, R. S. Davis, Temperature dependence of the shock induced transformation in iron, J. Appl. Phys. 33 (1962) 557-560.

Google Scholar

[14] A. Balchan and H. G. Drickamer, Phase diagrams at high temperature and high pressure, Determination and consequent developments/ Rev. Sci. Instr. 32 (1961) 308-319.

Google Scholar

[15] L. Williamson, F. Bukshpan, R. Ingalls. Magnetism in dense hexagonal iron, D Phys. 6 (1972) 4194-4206.

Google Scholar

[16] F.P. Bundy, Pressure-temperature phase diagram of iron to 200 kbar, 900 °C, J. Appl. Phys. 36 (1965) 616-620.

DOI: 10.1063/1.1714038

Google Scholar

[17] J.C. Jamieson, A.W. Lawson, X-ray diffraction studies in the 100 kilobares range, J. Appl. Phys. 33 (1962) 776-785.

Google Scholar

[18] S.V. Smerdov, V.V. Schmidt, I.G. Zhihareva Optimizatsiya zashchitno-korrozionnykh svoystv gal'vanicheskim splava Fe-Ni dlya neftekhimicheskogo oborudovaniya, Scientific and Technical Volga Reporter. 2 (2015) 36-40.

Google Scholar

[19] I.G. Zhikhareva, S.V. Smerdov, V.V. Schmidt Osobennosti makro- i mikrostruktura elektrokhimicheskogo splava Fe-Ni-Cr, Reporter TSU. 5 (2014) 161-169.

Google Scholar

[20] Programma «utochnenie metodom Ritvel'da», Programmnyy kompleks PDWin - 4. 0 (NPO «Burevestnik»), SPb, (2007).

Google Scholar

[21] V.L. Mironov, Fiziki i tekhniki. Osnovy skaniruyushchey zondovoy mikroskopii. Tekhnosfera, Moscow, (2004).

Google Scholar