[1]
Dr Roppelt,.T., W. Dienemann, R. Klaska, I. Leth and Th. Sievert, Use of alternative raw materials for cement clinker production, Cement International. 1 (2006) 54-63.
Google Scholar
[2]
N.E. Reznikov, Complex application of barium-containing waste in cement technology, PhD thesis, BSTU, Belgorod. (1996).
Google Scholar
[3]
Sui Tongbo, The use of industrial waste in the cement industry in China, ALITinform: Cement. Concrete. Dry mix. 6 (2012) 6-15.
Google Scholar
[4]
R.V. Tarasov, L.V. Makarova, The analysis of fire-resistant composites, Contemporary Engineering Science. 8 (2015) 667-671.
Google Scholar
[5]
I.G. Luginina, N.E. Razinkova, Barium sulfate in waste as an effective additive. Problems of science, education and sustainable social and economic development at the beginning of XXI century (issue 4), The South Kazakhstan State University named after M. Auezov, Shymkent. (2003).
DOI: 10.51579/1563-2415.2021-1.17
Google Scholar
[6]
V.M. Konovalov, D.N. Devyatov, A.A. Goncharov, Influence of barium sulfate on clinker formation and grindability. Research, nanosystems and resource-saving technologies in the construction materials industry, Belgorod. (2010) 102-106.
Google Scholar
[7]
I.G. Luginina, I.N. Novoselova, A.G. Novosyolov, Investigation of the Influence of Barite Retreat to the Grindability Magnesium-Containing Clinker and Cement Properties, Middle East Journal of Scientific Research. 18 (2013) 1676-1683.
Google Scholar
[8]
D. N. Wetzel, Streit, A. Hand, Increasing the energy efficiency by using mineral by-products at the Russian cement works in Novotroitsk, Cement International. 2 (2013) 70-77.
Google Scholar
[9]
K. Bauer, V. Hoenig, Energy efficiency of cement plants, Cement International. 3(2010) 50-57.
Google Scholar
[10]
V.E. Kaushansky, O.N. Valyaeva, The barium-containing waste as mineralizer of clinker burning process, Cement and its use, 3 (2002) 31-32.
Google Scholar
[11]
Guo Xiangyang, Wang Shoude, Lu Lingchao and Wang Hui, Influence of barium oxide on the composition and performance of alite-rich Portland cement, Adv. Cem. Res. 24 (2012): 139-144.
DOI: 10.1680/adcr.10.00033
Google Scholar
[12]
T.I. Tymoshenko, A.S. Firsova, M.I. Plyasunova, Ways of increasing cement quality at CJSC Kavkazcement, Research, nanosystems and resource-saving technologies in the industry of building materials, Belgorod. (2010) 261-265.
Google Scholar
[13]
I.B. Topcu, Properties of heavyweight concrete produced with barite, Cem. and Concr. Res. 33 (2003) 815-822.
Google Scholar
[14]
I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate, Ann. Nucl. Energy. 37 (2010) 910-914.
DOI: 10.1016/j.anucene.2010.04.001
Google Scholar
[15]
G.N. Shabanova, Prospective binders for protection against ionizing radiation. 16th Mendeleev Congress on General and Applied Chemistry, Moscow. (1998) 527-528.
Google Scholar
[16]
Cheng Xin, Chang Jun, Lu Lingchao, Liu Futian and Teng Bing, Study of Ba-bearing calcium sulphoaluminate minerals and cement, Cem. and Concr. Res. 30 (2000) 77-81.
DOI: 10.1016/s0008-8846(99)00204-5
Google Scholar
[17]
N.A. Zaitseva, Investigation of physicochemical parameters of barium-containing clinker. Modern technologies in the industry of building materials and construction industry, Belgorod. (2005) 96-98.
Google Scholar
[18]
Zhang Weiwei, Lu Lingchao, Cui Yingjing, Chang Jun and Cheng Xin, Guisuanyuan xuebao. J. Chin, Ceram. Soc. 35 (2007) 467-471.
Google Scholar
[19]
Bobesic Branko, Influence of BaSO4 on the formation and hydratation properties of calcium silicates, Amer. Ceram. Soc. Bull. 11 (1981) 1164-1167.
Google Scholar
[20]
K.V. Semenov, Yu. G. Barabanshchikov, Thermal crack resistance of massive concrete base slabs and its maintenance during the winter period of construction, Construction of unique buildings and structures. 2 (2014) 125-135.
Google Scholar
[21]
Yu. G. Barabanshchikov, K.V. Semenov, Thermo-stressed condition of concrete and its thermal crack resistance supporting, Populyarnoe betonovedenie. 1/2 (2011) 70-73.
Google Scholar
[22]
Yu. G. Barabanshchikov, K.V. Semenov, Thermal crack resistance of base slabs concrete. Populyarnoe betonovedenie. 1 (2009) 70-73.
Google Scholar
[23]
L. Svatovskaya, A. Sychova, M. Sychov, V. Okrepilov, Quality Improvement of Concrete Articles (2016) MATEC Web of Conferences, 53, art. no. 01023.
DOI: 10.1051/matecconf/20165301023
Google Scholar
[24]
L. Svatovskaya, A. Sychova, M. Sychov, V. Okrepilov, New Parameter of Geoecological Protective Ability of Construction Articles (2016) MATEC Web of Conferences, 53, art. no. 01024.
DOI: 10.1051/matecconf/20165301024
Google Scholar