[1]
L. Vieira et al., Scratch Testing for Micro- and Nanoscale Evaluation of Tribocharging in DLC Films Containing Silver Nanoparticles Using AFM and KPFM Techniques, J. Surface and Coatings Technology. 260 (2014) 205-213.
DOI: 10.1016/j.surfcoat.2014.06.065
Google Scholar
[2]
YAN Yong-da et al., AFM-based Nanoscratch Test, J. Nanotechnology and Engineering. 6 (2008) 356-361.
Google Scholar
[3]
T.W. Scharf et al., Monitoring Transfer Films and Friction Instabilities with In Situ Raman Tribometry , J. Tribology Letters. 14 (2003) 3-8.
Google Scholar
[4]
D. Marchetto et al., AFM investigation of tribological properties of nano-patterned silicon surface, J. Wear. 265 (2008) 577-582.
DOI: 10.1016/j.wear.2007.12.010
Google Scholar
[5]
Han Jiang et al., Influence of Surface Roughness and Contact Load on Friction Coefficient and Scratch Behavior of Thermoplastic Olefins, J. Applied Surface Science. 254 (2008) 4494-4499.
DOI: 10.1016/j.apsusc.2008.01.067
Google Scholar
[6]
Maneesh Mishra et al., Analytical Model for Plowing Friction at Nanoscale, J. Tribology Letters. 45 (2012) 417-426.
DOI: 10.1007/s11249-011-9899-y
Google Scholar
[7]
Kenneth Holmberg et al., Topographical Orientation Effects on Friction and Wear in Sliding DLC and Steel Contacts, part 1: Experimental, J. Wear. 3-22 (2015) 330-331.
DOI: 10.1016/j.wear.2015.02.014
Google Scholar
[8]
N.K. Myshkin et al., Tribology of Polymers: Adhesion, Friction, Wear, and Mass-transfer, J. Tribology International. 38 (2006) 910-921.
DOI: 10.1016/j.triboint.2005.07.016
Google Scholar
[9]
L.M. Qian et al., Nanotribology, Science Press, (2003).
Google Scholar
[10]
Bharat Bhushan et al., Thin-film Friction and Adhesion Studies Using Atomic Force Microscopy, J. Journal of applied physics. 87 (2000) 1201-1210.
DOI: 10.1063/1.371998
Google Scholar
[11]
Bharat Bhushan et al., Nanotribology and Nanomechanics, J. Wear. 259 (2005) 1507-1531.
DOI: 10.1016/j.wear.2005.01.010
Google Scholar
[12]
Pengzhe Zhu et al., Study of Effect of Indenter Shape in Nanometric Scratching Process Using Molecular Dynamics, J. Materials Science and Engineering A. 528 (2011) 4522-4527.
DOI: 10.1016/j.msea.2011.02.035
Google Scholar
[13]
Ampere A. Tseng et al., Scratch Direction and Threshold Force in Nanoscale Scratching Using Atomic Force Microscopes, J. Applied Surface Science. 257 (2011) 9243-9250.
DOI: 10.1016/j.apsusc.2011.04.065
Google Scholar
[14]
Jiaxin Yu et al., Hailong Hu, Quantitative Investigation on Single-asperity Friction and Wear of Phosphate Laser Glass Against A Spherical AFM Diamond Tip, J. Tribology International. 81 (2015) 43-52.
DOI: 10.1016/j.triboint.2014.07.020
Google Scholar
[15]
Yanquan Geng et al., Depth Prediction Model of Nano-grooves Fabricated by AFM-based Multi-passes Scratching Method, J. Applied Surface Science. 313 (2014) 615-623.
DOI: 10.1016/j.apsusc.2014.06.033
Google Scholar
[16]
Yanquan Geng et al., Modelling and Experimental Study of Machined Depth in AFM-based Milling of Nanochannels, J. International Journal of Machine Tools and Manufacture. 73 (2013) 87-96.
DOI: 10.1016/j.ijmachtools.2013.07.001
Google Scholar
[17]
Yifang Cao et al., Nanoindentation Measurements of The Mechanical Properties of Polycrystalline Au and Ag Thin Films on Silicon Substrates: Effects of Grain Size and Film Thickness, J. Materials Science and Engineering A. 427 (2006) 232-240.
DOI: 10.1016/j.msea.2006.04.080
Google Scholar