[1]
G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3893–3904.
DOI: 10.1016/s1359-6454(98)00059-7
Google Scholar
[2]
C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, The influence of temperature and storage time at RT on nucleation of the b" phase in a 6082 Al-Mg-Si alloy, Acta Mater. 52 (2003) 789–796.
DOI: 10.1016/s1359-6454(02)00470-6
Google Scholar
[3]
M.A. van Huis, J.H. Chen, M.H.F. Sluiter, H.W. Zandbergen, Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution, Acta Mater. 55 (2007) 2183–2199.
DOI: 10.1016/j.actamat.2006.11.019
Google Scholar
[4]
Y. Birol, Pre-aging to improve bake hardening in a twin-roll cast Al-Mg-Si alloy, Mater. Sci. Eng. A 391 (2005) 175–180.
DOI: 10.1016/j.msea.2004.08.069
Google Scholar
[5]
T. Masuda, Y. Takaki, T. Sakurai, S. Hirosawa, Combined effect of pre-straining and pre-aging on bake-hardening behavior of an Al-0. 6 mass%Mg-1. 0 mass%Si alloy, Mater. Trans. 51 (2010) 325–332.
DOI: 10.2320/matertrans.l-m2009831
Google Scholar
[6]
S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Mechanisms controlling the artificial aging of Al-Mg-Si alloys, Acta Mater. 59 (2011) 3352–3363.
DOI: 10.1016/j.actamat.2011.02.010
Google Scholar
[7]
J. Banhart, M. Liu, Y. Yong, Z. Liang, C.S.T. Chang, M. Elsayed, M.D.H. Lay, Study of ageing in Al-Mg-Si alloys by positron annihilation spectroscopy, Physica B407 (2012) 2689–2696.
DOI: 10.1016/j.physb.2012.03.028
Google Scholar
[8]
L. Cao, P.A. Rometsch, M.J. Couper, Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A, Mater. Sci. Eng. A559 (2013) 257–261.
DOI: 10.1016/j.msea.2013.01.065
Google Scholar
[9]
L. Ding, Y. He, Z. Wen, P. Zhao, Z. Jia, Q. Liu, Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times, J. Alloys Comp. 647 (2015) 238–244.
DOI: 10.1016/j.jallcom.2015.05.188
Google Scholar
[10]
Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Evaluation of solute clusters associated with bake-hardening response in isothermal aged Al-Mg-Si alloys using a three-dimensional atom probe, Metall. Mater. Trans. 45A (2014) 5906–5913.
DOI: 10.1007/s11661-014-2548-y
Google Scholar
[11]
J.M. Hyde, Computer modeling and analysis of microscale phase transformations, Doctoral Thesis, Oxford University, U.K., (1993).
Google Scholar
[12]
Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy, Mater. Sci. Eng. A631 (2015) 86–96.
DOI: 10.1016/j.msea.2015.02.035
Google Scholar
[13]
H.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers, J.C. Walmsley, C.D. Marioara, F. Danoix, W. Lefebvre, R. Holmestad, Composition of b" precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations, J. Appl. Phys. 106 (2009).
DOI: 10.1063/1.3269714
Google Scholar
[14]
P.H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, W. Levebvre, C.D. Marioara, S.J. Andersen, J. Friis, R. Holmestad, O.M. Løvvik, Detailed atomistic insight into the b" phase in Al-Mg-Si alloys, Acta Mater. 69 (2014) 126–134.
DOI: 10.1016/j.actamat.2014.01.052
Google Scholar