Effect of the Deformation Parameters on the Microstructure of TiC-Al2O3P/Al Composites

Article Preview

Abstract:

An aluminum matrix composite reinforced by TiC and Al2O3 particles was synthesized using TiO2, C, and Al powder by the in-situ reaction. The effects of deformation parameters on the microstructure of the TiC-Al2O3/Al composite were investigated using XRD, SEM and TEM. The result shows that the strain rate and deformation temperature influence the size, styles, and distribution of the second phase. Reinforcements are dispersed in a distribution with increasing deformation temperature and strain rate. However, broken Al3Ti exhibits redissolution phenomenon. The new precipitated Al3Ti phase will precipitate from the strain-induced solid solution when the total strain increases to a certain degree at a high deformation temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-244

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Zhang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system, J. Materials Letters., 65 (13) (2011) 2070-(2072).

DOI: 10.1016/j.matlet.2011.04.030

Google Scholar

[2] C.S. Ramesh, S. Pramod, R.A. Keshavamurthy, Study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites, Materials Science and Engineering: A. 528(12) (2011) 4125-4132.

DOI: 10.1016/j.msea.2011.02.024

Google Scholar

[3] G.N. Kumara, R. Narayanasamya,S. Natarajanb, S.P.K. Babub,K. Sivaprasadb,S. Sivasankarana, Dry sliding wear behaviour of AA 6351-ZrB2 in situ composite at room temperature, J. Materials & Design., 31 (3) (2010) 1526–1532.

DOI: 10.1016/j.matdes.2009.09.017

Google Scholar

[4] M. Zakeri, M.R. Rahimipour, S.K. Sadrnezhad , R. Yazdani-rad, Preparation of Al2O3-TiC nanocomposite by mechano-chemical reduction of TiO2 with aluminum and graphite, J. Journal of Alloys and Compounds., 481 (1-2) (2009)320-325.

DOI: 10.1016/j.jallcom.2009.02.122

Google Scholar

[5] P.T. Li, X.G. Ma, Y.G. Li, J.F. Nie,  X.F. Liu, Effects of trace C addition on the microstructure and refining efficiency of Al-Ti-B master alloy, J. Journal of Alloys and Compounds. 503 (2) (2010) 286-290.

DOI: 10.1016/j.jallcom.2010.04.251

Google Scholar

[6] B.H. Li, Y. Liu, H. Cao, L. He , J. Li, Rapid fabrication of in situ TiC particulates reinforced Fe-based composites by spark plasma sintering, J. Materials Letters. 63 (23) (2009) 2010-(2012).

DOI: 10.1016/j.matlet.2009.06.026

Google Scholar

[7] J.H. Peng, W.F. Li, F.L. Huang, J. Du, Effect of rare earth Pr on microstructure and mechanical properties of Al2O3-SiO2(sf)/Al-Si composites, J. Transactions of Nonferrous Metals Society of China. 19 (5) (2009) 1081-1086.

DOI: 10.1016/s1003-6326(08)60410-0

Google Scholar

[8] D.G. Zhao, X.F. Liu, Y.C. Pan, X.F. Bian, X.J. Liu, Microstructure and mechanical properties of in situ synthesized (TiB2+Al2O3)/Al-Cu composites, J. Journal of Materials Processing Technology. 189 (1-3) (2007) 237-241.

DOI: 10.1016/j.jmatprotec.2007.01.028

Google Scholar

[9] H.M. Ding, X.F. Liu, L.N. Yu,G.Q. Zhao, The influence of forming processes on the distribution and morphologies of TiC in Al–Ti–C master alloys, J. Scripta Materialia. 57 (7) (2007) 575-578.

DOI: 10.1016/j.scriptamat.2007.06.028

Google Scholar

[10] P. Shen, B.L. Zou, S.B. Jin, Q.C. Jiang, Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system, J. Materials Science and Engineering: A. 454-455 (2007) 300-309.

DOI: 10.1016/j.msea.2006.11.055

Google Scholar

[11] R. Bauri, D. Yadav, G. Suhas, Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite, J. Materials Science and Engineering: A. 528 (13–14) (2011) 4732-4739.

DOI: 10.1016/j.msea.2011.02.085

Google Scholar

[12] A. Abedini, C. Butcher, Z.T. Chen, Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites, J. Computational Materials Science. 73 (0) (2013)15-23.

DOI: 10.1016/j.commatsci.2013.02.021

Google Scholar

[13] X.P. Wei, W.J. Zheng, Z.G. Song, T. Lei, Q.L. Yong, Q.C. Xie, Strain-induced Precipitation Behavior of δ Phase in Inconel 718 Alloy, J. Journal of Iron and Steel Research, International. 21 (3) (2014) 375-381.

DOI: 10.1016/s1006-706x(14)60058-3

Google Scholar

[14] S.M. Hong, M.Y. Kim, D.J. Min, K.H. Lee, J.H. Shim, D.I. Kim, J.Y. Suh , W.S. Jung, I.S. Choi, Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 Austenite stainless steel, J. Materials Characterization. 94 (0) (2014).

DOI: 10.1016/j.matchar.2014.04.002

Google Scholar

[15] Y.B. Cao, F.R. Xiao, G.Y. Qiao, C.J. Huang, X.B. Zhang, Z.X. Wu, B. Liao, Strain-induced precipitation and softening behaviors of high Nb microalloyed steels, J. Materials Science and Engineering: A. 552 (0) (2012) 502-513.

DOI: 10.1016/j.msea.2012.05.078

Google Scholar

[16] Y.J. Lang, Y.H. Cai, H. Cui, J.S. Zhang, Effect of strain-induced precipitation on the low angle grain boundary in AA7050 aluminum alloy, J. Materials & Design. 32 (8–9) (2011) 4241-4246.

DOI: 10.1016/j.matdes.2011.04.025

Google Scholar

[17] C. Pöhl, D. Lang, J. Schatte, H. Leitnera, Strain induced decomposition and precipitation of carbides in a molybdenum–hafnium–carbon alloy, J. Journal of Alloys and Compounds. 579 (0) (2013) 422-431.

DOI: 10.1016/j.jallcom.2013.06.086

Google Scholar