[1]
M. Treacy, T. Ebbesen, J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature. 381 (1996) 678-680.
DOI: 10.1038/381678a0
Google Scholar
[2]
M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Physical review letters. 84 (2000) 5552-5555.
DOI: 10.1103/physrevlett.84.5552
Google Scholar
[3]
M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks, S. Washburn, R. Superfine, Bending and buckling of carbon nanotubes under large strain, Nature. 389 (1997) 582-584.
DOI: 10.1038/39282
Google Scholar
[4]
X.N. Hao, H.P. Zhang, R.X. Zheng, Y.T. Zhang, K. Ameyama, C.L. Ma, Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders, Trans. Nonferrous Met. Soc. China, 24 (2014) 2380-2386.
DOI: 10.1016/s1003-6326(14)63360-4
Google Scholar
[5]
L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, W.Y. Yeung, An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder, Carbon. 49 (2011) 1965-(1971).
DOI: 10.1016/j.carbon.2011.01.021
Google Scholar
[6]
H.P. Li, J.W. Fan, J.L. Kang, N.Q. Zhao, X.X. Wang, B.E. Li, In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites, Trans. Nonferrous Met. Soc. China. 24 (2014) 2331-2336.
DOI: 10.1016/s1003-6326(14)63353-7
Google Scholar
[7]
K. Chu, C.C. Jia, L. k. Jiang, W. s. Li, Improvement of interface and mechanical properties in carbon nanotube reinforced Cu–Cr matrix composites, Materials & Desig. 45 (2013) 407-411.
DOI: 10.1016/j.matdes.2012.09.027
Google Scholar
[8]
R. Guzman de Villoria, A. Miravete, Mechanical model to evaluate the effect of the dispersion in nanocomposites, Acta Materialia. 55 (2007) 3025-3031.
DOI: 10.1016/j.actamat.2007.01.007
Google Scholar
[9]
J. Hwang, B. Lim, J. Tiley, R. Banerjee, S. Hong, Interface analysis of ultra-high strength carbon nanotube/nickel composites processed by molecular level mixing, Carbon. 57 (2013) 282-287.
DOI: 10.1016/j.carbon.2013.01.075
Google Scholar
[10]
K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal, Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials. 28 (2007) 618-624.
DOI: 10.1016/j.biomaterials.2006.09.013
Google Scholar
[11]
T. Chen, Z. Cai, L. Qiu, H. Li, J. Ren, H. Lin, Z. Yang, X. Sun, H. Peng, Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition, Journal of Materials Chemistry A. 1 (2013) 2211-2216.
DOI: 10.1039/c2ta01039a
Google Scholar
[12]
W. He, C. Li, B. Luan, R. Qiu, K. Wang, Z. Li, Q. Liu, Deformation behaviors and processing maps ofCNTs/Al alloy composite fabricated by flake powder metallurgy, Trans. Nonferrous Met. Soc. China. 25 (2015) 3578-3584.
DOI: 10.1016/s1003-6326(15)63997-8
Google Scholar
[13]
K.S. Munir, P. Kingshott, C. Wen, Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy–A Review, Critical Reviews in Solid State and Materials Sciences. (2014) 1-18.
DOI: 10.1080/10408436.2014.929521
Google Scholar
[14]
S.M. Zhou, X.B. Zhang, Z.P. Ding, C.Y. Min, G.L. Xu, W.M. Zhu, Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Composites Part A: Applied Science and Manufacturing. 38 (2007).
DOI: 10.1016/j.compositesa.2006.04.004
Google Scholar
[15]
S.R. Bakshi, A. Agarwal, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites, Carbon. 49 (2011) 533-544.
DOI: 10.1016/j.carbon.2010.09.054
Google Scholar
[16]
C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, M. Leparoux, Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites, Journal of Alloys and Compounds. 585 (2014) 362-367.
DOI: 10.1016/j.jallcom.2013.09.142
Google Scholar
[17]
H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon. 47 (2009) 570-577.
DOI: 10.1016/j.carbon.2008.10.041
Google Scholar
[18]
C. Deng, D. Wang, X. Zhang, A. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Materials Science and Engineering: A. 444 (2007) 138-145.
DOI: 10.1016/j.msea.2006.08.057
Google Scholar
[19]
H. Wei, Z. Li, D. -B. Xiong, Z. Tan, G. Fan, Z. Qin, D. Zhang, Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design, Scripta Materialia. 75 (2014) 30-33.
DOI: 10.1016/j.scriptamat.2013.11.014
Google Scholar
[20]
L. Jiang, Z. Li, G. Fan, L. Cao, D. Zhang, Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes, Scripta Materialia. 66 (2012) 331-334.
DOI: 10.1016/j.scriptamat.2011.11.023
Google Scholar
[21]
X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science. 312 (2006) 249-251.
DOI: 10.1126/science.1124268
Google Scholar
[22]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Progress in Materials Science. 51 (2006) 427-556.
DOI: 10.1016/j.pmatsci.2005.08.003
Google Scholar
[23]
L. Lu, S. Li, K. Lu, An abnormal strain rate effect on tensile behavior in nanocrystalline copper, Scripta Materialia. 45 (2001) 1163-1169.
DOI: 10.1016/s1359-6462(01)01138-1
Google Scholar