Abnormal Effects of Temperature and Strain Rate on the Ductility of a Carbon Nanotubes Reinforced Al Alloy Composite

Article Preview

Abstract:

Carbon nanotubes reinforced aluminum alloy (CNTs/Al alloy) composite was fabricated by the method of flake powder metallurgy. With Gleeble-3500 system, hot compression tests at different temperatures and strain rates were conducted to investigate the effect of temperature and strain rate on the deformation behaviors of the CNTs/Al alloy composite. Experimental results show that the composite’s ductility is worse at higher deformation temperature within range of 300 oC-450 oC. Additionally, the composite’s ductility is better at higher strain rate, which is against general knowledge. The microstructure before and after deformation were characterized by SEM and TEM. It demonstrates that the grain size of the composite is always in the nanoscale. The abnormal effects of temperature and strain rate on the ductility may be explained by the evolution of work hardening capability at different deformation conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-257

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Treacy, T. Ebbesen, J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature. 381 (1996) 678-680.

DOI: 10.1038/381678a0

Google Scholar

[2] M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Physical review letters. 84 (2000) 5552-5555.

DOI: 10.1103/physrevlett.84.5552

Google Scholar

[3] M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks, S. Washburn, R. Superfine, Bending and buckling of carbon nanotubes under large strain, Nature. 389 (1997) 582-584.

DOI: 10.1038/39282

Google Scholar

[4] X.N. Hao, H.P. Zhang, R.X. Zheng, Y.T. Zhang, K. Ameyama, C.L. Ma, Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders, Trans. Nonferrous Met. Soc. China, 24 (2014) 2380-2386.

DOI: 10.1016/s1003-6326(14)63360-4

Google Scholar

[5] L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, W.Y. Yeung, An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder, Carbon. 49 (2011) 1965-(1971).

DOI: 10.1016/j.carbon.2011.01.021

Google Scholar

[6] H.P. Li, J.W. Fan, J.L. Kang, N.Q. Zhao, X.X. Wang, B.E. Li, In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites, Trans. Nonferrous Met. Soc. China. 24 (2014) 2331-2336.

DOI: 10.1016/s1003-6326(14)63353-7

Google Scholar

[7] K. Chu, C.C. Jia, L. k. Jiang, W. s. Li, Improvement of interface and mechanical properties in carbon nanotube reinforced Cu–Cr matrix composites, Materials & Desig. 45 (2013) 407-411.

DOI: 10.1016/j.matdes.2012.09.027

Google Scholar

[8] R. Guzman de Villoria, A. Miravete, Mechanical model to evaluate the effect of the dispersion in nanocomposites, Acta Materialia. 55 (2007) 3025-3031.

DOI: 10.1016/j.actamat.2007.01.007

Google Scholar

[9] J. Hwang, B. Lim, J. Tiley, R. Banerjee, S. Hong, Interface analysis of ultra-high strength carbon nanotube/nickel composites processed by molecular level mixing, Carbon. 57 (2013) 282-287.

DOI: 10.1016/j.carbon.2013.01.075

Google Scholar

[10] K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal, Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials. 28 (2007) 618-624.

DOI: 10.1016/j.biomaterials.2006.09.013

Google Scholar

[11] T. Chen, Z. Cai, L. Qiu, H. Li, J. Ren, H. Lin, Z. Yang, X. Sun, H. Peng, Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition, Journal of Materials Chemistry A. 1 (2013) 2211-2216.

DOI: 10.1039/c2ta01039a

Google Scholar

[12] W. He, C. Li, B. Luan, R. Qiu, K. Wang, Z. Li, Q. Liu, Deformation behaviors and processing maps ofCNTs/Al alloy composite fabricated by flake powder metallurgy, Trans. Nonferrous Met. Soc. China. 25 (2015) 3578-3584.

DOI: 10.1016/s1003-6326(15)63997-8

Google Scholar

[13] K.S. Munir, P. Kingshott, C. Wen, Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy–A Review, Critical Reviews in Solid State and Materials Sciences. (2014) 1-18.

DOI: 10.1080/10408436.2014.929521

Google Scholar

[14] S.M. Zhou, X.B. Zhang, Z.P. Ding, C.Y. Min, G.L. Xu, W.M. Zhu, Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Composites Part A: Applied Science and Manufacturing. 38 (2007).

DOI: 10.1016/j.compositesa.2006.04.004

Google Scholar

[15] S.R. Bakshi, A. Agarwal, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites, Carbon. 49 (2011) 533-544.

DOI: 10.1016/j.carbon.2010.09.054

Google Scholar

[16] C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, M. Leparoux, Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites, Journal of Alloys and Compounds. 585 (2014) 362-367.

DOI: 10.1016/j.jallcom.2013.09.142

Google Scholar

[17] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon. 47 (2009) 570-577.

DOI: 10.1016/j.carbon.2008.10.041

Google Scholar

[18] C. Deng, D. Wang, X. Zhang, A. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Materials Science and Engineering: A. 444 (2007) 138-145.

DOI: 10.1016/j.msea.2006.08.057

Google Scholar

[19] H. Wei, Z. Li, D. -B. Xiong, Z. Tan, G. Fan, Z. Qin, D. Zhang, Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design, Scripta Materialia. 75 (2014) 30-33.

DOI: 10.1016/j.scriptamat.2013.11.014

Google Scholar

[20] L. Jiang, Z. Li, G. Fan, L. Cao, D. Zhang, Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes, Scripta Materialia. 66 (2012) 331-334.

DOI: 10.1016/j.scriptamat.2011.11.023

Google Scholar

[21] X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science. 312 (2006) 249-251.

DOI: 10.1126/science.1124268

Google Scholar

[22] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Progress in Materials Science. 51 (2006) 427-556.

DOI: 10.1016/j.pmatsci.2005.08.003

Google Scholar

[23] L. Lu, S. Li, K. Lu, An abnormal strain rate effect on tensile behavior in nanocrystalline copper, Scripta Materialia. 45 (2001) 1163-1169.

DOI: 10.1016/s1359-6462(01)01138-1

Google Scholar