[1]
Hatayama, H., et al., Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resources, Conservation and Recycling, 2012. 66: pp.8-14.
DOI: 10.1016/j.resconrec.2012.06.006
Google Scholar
[2]
Miller, W.S., et al., Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 2000. 280(1): pp.37-49.
Google Scholar
[3]
Carle, D. and G. Blount, The suitability of aluminium as an alternative material for car bodies. Materials & Design, 1999. 20(5): pp.267-272.
DOI: 10.1016/s0261-3069(99)00003-5
Google Scholar
[4]
Zhou, J., X. Wan and Y. Li, Advanced aluminium products and manufacturing technologies applied on vehicles presented at the eurocarbody conference. Materials Today: Proceedings, 2015. 2(10): pp.5015-5022.
DOI: 10.1016/j.matpr.2015.10.091
Google Scholar
[5]
Hirsch, J. R., Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China, 2014. 24(7): p.1995-(2002).
DOI: 10.1016/s1003-6326(14)63305-7
Google Scholar
[6]
Mallick, P.K., Advanced materials for automotive applications: an overview. 2012, Woodhead Publishing Limited: Dearborn. pp.5-27.
Google Scholar
[7]
Benedyk, J.C., Aluminum alloys for lightweight automotive structures. 2010, Woodhead Publishing Limited. pp.79-113.
Google Scholar
[8]
Chadwick, R., and Hooper, W.H.L., Journal of the Institute of Metals, 1951-52, Vol. 80, p.17.
Google Scholar
[9]
Lloyd, D.J., The deformation of commercial aluminum-magnesium alloys, Met. Trans A, 1980, Vol. 11A, pp.1287-1294.
Google Scholar
[10]
Luo, H., H. Dong and M. Huang, Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Materials & Design, 2015. 83: pp.42-48.
DOI: 10.1016/j.matdes.2015.05.085
Google Scholar
[11]
Mishin, O.V., et al., Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain. Acta Materialia, 2013. 61(14): pp.5354-5364.
DOI: 10.1016/j.actamat.2013.05.024
Google Scholar
[12]
Weiland, H., Nucleation and Growth of Recrystallized Grains During Industrial Thermomechanical Processing of Aluminum Alloys, Proceedings of 16th Riso Conference, in Microstructural and Crystallographic Aspects of Recrystallization, Ed. N. Hansen et. al., 1995, pp.215-228.
Google Scholar
[13]
The Aluminum Association, International alloy designations and chemical composition limits for wrought aluminum alloys, 2009, p.8.
Google Scholar
[14]
Hirsch, J.R., Proceedings of Recrystallization '90, Ed. T. Chandra, TMS, Warrendale, Pa. 1990. p.759.
Google Scholar
[15]
Kim, H., et al. Effect of primary recrystallization texture on abnormal grain growth in an aluminum alloy[J]. Scripta Materialia. 2007, 57(4): 325-327.
DOI: 10.1016/j.scriptamat.2007.04.023
Google Scholar
[16]
Nes. E., Vatne, H.E., Daaland, O., Furul, T., Orsund, R., and Marthinsen, K., Physical modelling of microstructural evolution during thermomechanical processing of aluminum alloys, Proceedings of 4th ICAA, pp.18-49.
Google Scholar