[1]
J. R. Davis, Aluminum and aluminum alloys, ASM International, (1993).
Google Scholar
[2]
J. R. Davis, Corrosion of aluminum and aluminum alloys, Asm International, (1999).
Google Scholar
[3]
Z. M. Yin, D. P. Zhu, F. Jiang, Recrystallization of Al-Mg-Mn and Al-Mg-Mn-Sc-Zr alloys, Cailiao Gongcheng (J. Mater. Eng. )(China), (2004) 3-6.
Google Scholar
[4]
N. Sukiman, A. Hughes, G. Thompson, J. Mol, N. Birbilis, S. Garcia, X. Zhou, Durability and corrosion of aluminium and its alloys: overview, property space, techniques and developments, INTECH Open Access Publisher, (2012).
DOI: 10.5772/53752
Google Scholar
[5]
E. Dix Jr, W. Anderson, M.B. Shumaker, Influence of service temperature on the resistance of wrought aluminum- magnesium alloys to corrosion, Corrosion, 15 (1959) 55-62.
DOI: 10.5006/0010-9312-15.2.19
Google Scholar
[6]
G. Argade, N. Kumar, R. Mishra, Stress corrosion cracking susceptibility of ultrafine grained Al–Mg–Sc alloy, Materials Science and Engineering: A, 565 (2013) 80-89.
DOI: 10.1016/j.msea.2012.11.066
Google Scholar
[7]
R. Goswami, G. Spanos, P. Pao, R. Holtz, Precipitation behavior of the ß phase in Al-5083, Materials Science and Engineering: A, 527 (2010) 1089-1095.
DOI: 10.1016/j.msea.2009.10.007
Google Scholar
[8]
R. Goswami, R. L. Holtz, Transmission electron microscopic investigations of grain boundary beta phase precipitation in Al 5083 aged at 373 K (100 C), Metallurgical and Materials Transactions A, 44 (2013) 1279-1289.
DOI: 10.1007/s11661-012-1166-9
Google Scholar
[9]
Y. Zhu, D. A. Cullen, S. Kar, M. L. Free, L.F. Allard, Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging, Metallurgical and Materials Transactions A, 43 (2012).
DOI: 10.1007/s11661-012-1354-7
Google Scholar
[10]
W. D. Ren, J.F. Li, Z. Q. Zheng, W.J. Chen, Localized corrosion mechanism associated with precipitates containing Mg in Al alloys, Transactions of Nonferrous Metals Society of China, 17 (2007) 727-732.
DOI: 10.1016/s1003-6326(07)60164-2
Google Scholar
[11]
D. H. Choi, B. W. Ahn, D. J. Quesnel, S. -B. Jung, Behavior of β phase (Al3Mg2) in AA 5083 during friction stir welding, Intermetallics, 35 (2013) 120-127.
DOI: 10.1016/j.intermet.2012.12.004
Google Scholar
[12]
Y. K. Yang, T. Allen, Direct visualization of β phase causing intergranular forms of corrosion in Al–Mg alloys, Materials Characterization, 80 (2013) 76-85.
DOI: 10.1016/j.matchar.2013.03.014
Google Scholar
[13]
L. Kramer, M. Phillippi, W. Tack, C. Wong, Locally reversing sensitization in 5xxx aluminum plate, Journal of materials engineering and performance, 21 (2012) 1025-1029.
DOI: 10.1007/s11665-011-9998-9
Google Scholar
[14]
S. Jain, M. Lim, J. Hudson, J. Scully, Spreading of intergranular corrosion on the surface of sensitized Al-4. 4 Mg alloys: A general finding, Corrosion Science, 59 (2012) 136-147.
DOI: 10.1016/j.corsci.2012.02.018
Google Scholar
[15]
A.S. f. Testing, Materials, Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test), ASTM International, (2004).
DOI: 10.1520/g0067
Google Scholar
[16]
Z.M. Yin, D.P. Zhu, F. Jiang, Recrystallization of Al-Mg-Mn and Al-Mg-Mn-Sc-Zr alloys, J. Mater. Eng. (2004) 3-6.
Google Scholar
[17]
J. Searles, P. Gouma, R. Buchheit, Stress corrosion cracking of sensitized AA5083 (Al-4. 5 Mg-1. 0 Mn), Metallurgical and Materials Transactions A, 32 (2001) 2859-2867.
DOI: 10.1007/s11661-001-1036-3
Google Scholar