Computational Simulation of Localised Corrosion in Anodised AA 2099-T8 Aluminium-Lithium Alloy

Article Preview

Abstract:

The initiation of localised corrosion in anodised AA2099-T8 alloy is simulated by using Cellular Automata (CA) method. For CA simulation, the system consisting of corrosive electrolyte, porous anodic alumina film and alloy matrix is described as a 500×300 two-dimensional square lattice. Eight types of cells are defined to construct the cellular space, with the Von Neumann neighbourhood (four cells neighbourhood) being selected. The cellular space is constructed such that a void generated by oxidation of the high-copper-containing Al-Fe-Mn-Cu-Li particle exists in the porous anodic alumina film consisting of a porous layer and a barrier layer. It is suggested that localised corrosion is preferentially initiated in the void defect region in the porous anodic film, which is related to increased corrosion product diffusion rate in this region compared with diffusion in other regions of the porous layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

537-542

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q.Y. Wang, N. Kawagoishi, Q. Chen, R.M. Pidaparti, Evaluation of the probability distribution of pitting corrosion fatigue life in aircraft materials, Acta Mech. Sinica, 19 (2003) 247-252.

DOI: 10.1007/bf02484487

Google Scholar

[2] D.Z. Yu, Y.L. Chen, C.M. Duan, Statistical study on corrosion damage distribution of aircraft structure based on neural network, J. Chin. Soc. Corr. Pro., 26 (2006) 19-21. (in Chinese).

Google Scholar

[3] Y.L. Chen, G.Z. Lv, C.M. Duan, A quantitative model for prediction of corrosion damage of engineering components based on neural network, J. Northwestern Polytechnical University, 20 (2002) 368-372. (in Chinese).

Google Scholar

[4] W.F. Wu, C.C. Ni. Probabilistic models of fatigue crack propagation and their experimental verification, Probabilistic Eng. Mech., 19 (2004) 247-257.

DOI: 10.1016/j.probengmech.2004.02.008

Google Scholar

[5] J. Saunier, M. Dymitrowska, A. Chausse, J. Stafiej, J.P. Badiali, Diffusion, interactions and universal behavior in a corrosion growth model, J. Electroanal. Chem., 582 (2005) 267-273.

DOI: 10.1016/j.jelechem.2005.03.047

Google Scholar

[6] B. Malki, B. Baroux, Computer simulation of the corrosion pit growth, Corros. Sci., 47 (2005) 171-182.

DOI: 10.1016/j.corsci.2004.05.004

Google Scholar

[7] R.M. Pidaparti, L. Fang, M.J. Palakal, Computational simulation of multipit corrosion process in materials, Comput. Mater. Sci., 41 (2008) 255-265.

DOI: 10.1016/j.commatsci.2007.04.017

Google Scholar

[8] H. Wang, G.Z. Lv, L. Wang, Y.H. Zhang, Cellular Automaton Simulations of Surface Corrosion Damage Evolution, Acta Aeronautica et Astronautica Sinica, 29 (2008) 1490-1496. (in Chinese).

Google Scholar

[9] N. Murer, R.G. Buchheit, Stochastic modeling of pitting corrosion in aluminum alloys, Corros. Sci., 69 (2013) 139-148.

DOI: 10.1016/j.corsci.2012.11.034

Google Scholar

[10] L.R. He, Z.P. Yin, Q.Q. Huang, J.P. Liu, Simulation of local corrosion on metal surface with CA method, J. Aeronautical Mater., 35 (2015) 54-63. (in Chinese).

Google Scholar

[11] R.J. Rioja, Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications, Mater. Sci. Eng. A, 257 (1998) 100-107.

DOI: 10.1016/s0921-5093(98)00827-2

Google Scholar

[12] N.P. Gurao, A.O. Adesola, A.G. Odeshi, J.A. Szpunar, On the evolution of heterogeneous microstructure and microtexture in impacted aluminum-lithium alloy, J. Alloys Compd., 578 (2013) 183-187.

DOI: 10.1016/j.jallcom.2013.04.176

Google Scholar

[13] C. Gao, Y. Luan, J.C. Yu, Y. Ma, Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al-Li alloy, Trans. Nonferrous Met. Soc. China, 24 (2014) 2196-2202.

DOI: 10.1016/s1003-6326(14)63332-x

Google Scholar

[14] A. Dattilo, S. Tamiro, C. Romano, Anodizing process, with low environmental impact, for a woodpiece of aluminum or aluminum alloys, United States Patent Application, 20020157961 (2002).

Google Scholar

[15] P.G. Sheasby, R. Pinner, The surface treatment and finishing of aluminum and its alloys, Sixth ed., ASM international, Materials Park, Ohio, (2001).

Google Scholar

[16] Y. Ma, X. Zhou, G.E. Thompson, M. Curioni, T. Hashimoto, P. Skeldon, P. Thomson, M. Fowles, Anodic film formation on AA2099-T8 aluminium alloy in tartaric-sulphuric acid, J. Electrochem., Soc. 158 (2011) C17-C22.

DOI: 10.1149/1.3523262

Google Scholar

[17] Y. Ma, X. Zhou, G.E. Thompson, M. Curioni, X. Zhong, E. Koroleva, P. Skeldon, P. Thomson, M. Fowles, Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy, Corros. Sci., 53 (2011) 4141-4151.

DOI: 10.1016/j.corsci.2011.08.023

Google Scholar

[18] Y. Ma, X. Chen, X. Zhou, Y. Yi, Y. Liao, W. Huang, Microstructural origin of localized corrosion in anodised AA2099-T8 aluminium-lithium alloy, Surf. Interface Anal. DOI: 10. 1002/sia. 5856 (2015).

DOI: 10.1002/sia.5856

Google Scholar

[19] Y. Ma, X. Zhou, G.E. Thompson, T. Hashimoto, P. Thomson, M. Fowles, Distribution of Intermetallics in an AA 2099-T8 Aluminium Alloy Extrusion, Mater. Chem. Phys., 126 (2011) 46-53.

DOI: 10.1016/j.matchemphys.2010.12.014

Google Scholar

[20] J.O.M. Bockris, Lj.V. Minevski, On the mechanism of the passivity of aluminum and aluminum alloys, J. Electroanal. Chem., 349 (1993)375-414.

DOI: 10.1016/0022-0728(93)80186-l

Google Scholar