About the Role of Hydrogen in Stress Corrosion Cracking of a 7xxx Aluminium Alloy (Al-Zn-Mg)

Article Preview

Abstract:

The effects of hydrogen during stress corrosion cracking mechanisms (SCC) have been highlighted for many years but hydrogen trapping mechanisms are not yet well understood for 7xxx aluminium alloys. The 7046-T4 Al-Zn-Mg alloy has been chosen for this study because its low corrosion susceptibility allows hydrogen embrittlement (HE) to be more easily distinguished during SCC tests. Tensile stress tests have been carried out at a strain rate of 10-3 s-1 on tensile samples after an exposure at their corrosion potential in a 0.6M chloride solution for 165 hours under an imposed loading of 80%Rp0.2. The results were compared to those obtained for samples pre-corroded without mechanical loading applied and healthy specimens. A loss of mechanical properties was observed for the pre-corroded samples and presumably attributed to the absorption, the diffusion and the trapping of hydrogen which affects a volume under the surface of the alloy and modifies its mechanical properties. Scanning electron microscope (SEM) observations highlighted a strong effect of hydrogen on fracture modes. The ductile-intergranular initial fracture mode observed on the healthy samples was partially replaced for the pre-corroded samples by a combination of two main fracture modes, i.e. brittle intergranular and cleavage, in relation with the nature of the hydrogen trapping sites and local stress state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

522-529

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hirsch, Recent development in aluminium for automotive applications, Transactions of Nonferrous Metals Society of China. 24 (2014) 1995–(2002).

DOI: 10.1016/s1003-6326(14)63305-7

Google Scholar

[2] S. Chen, K. Chen, P. Dong, S. Ye, and L. Huang, Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy, Transactions of Nonferrous Metals Society of China. 24 (2014) 2320–2325.

DOI: 10.1016/s1003-6326(14)63351-3

Google Scholar

[3] W. Gruhl, Stress corrosion crack of high strength aluminium alloys, Zeitschrift für Metallkunde. 75 (1984) 819–826.

DOI: 10.1515/ijmr-1984-751101

Google Scholar

[4] G. M. Scamans, R. Alani, and P. R. Swann, Pre-exposure embrittlement and stress corrosion failure in AlZnMg Alloys, Corrosion Science, 16 (1976) 443-459.

DOI: 10.1016/0010-938x(76)90065-2

Google Scholar

[5] K. R. Hebert, Trapping of hydrogen absorbed in aluminum during corrosion, Electrochima Acta. 168 (2015) 199–205.

DOI: 10.1016/j.electacta.2015.03.198

Google Scholar

[6] D. Najjar, T. Magnin, and T. Warner, Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy, Materials Science and Engineering A. 238 (1997).

DOI: 10.1016/s0921-5093(97)00369-9

Google Scholar

[7] H. Yamada, M. Tsurudome, N. Miura, K. Horikawa, and N. Ogasawara, Ductility loss of 7075 aluminum alloys affected by interaction of hydrogen, fatigue deformation, and strain rate, Materials Science and Engineering A. 642 (2015) 194–203.

DOI: 10.1016/j.msea.2015.06.084

Google Scholar

[8] A. S. El-Amoush, An investigation of hydrogen-induced hardening in 7075-T6 aluminum alloy, Journal of Alloys and Compounds. 465 (2008) 497–501.

DOI: 10.1016/j.jallcom.2007.10.126

Google Scholar

[9] G. A. Young and J. R. Scully, The diffusion and trapping of hydrogen in high purity aluminum, Acta Metallurgica. 18 (1998) 6337–6349.

DOI: 10.1016/s1359-6454(98)00333-4

Google Scholar

[10] M. Dadfarnia, M. L. Martin, A. Nagao, P. Sofronis, and I. M. Robertson, Modeling hydrogen transport by dislocations, Journal Of Mechanical Physics And Solids. 78 (2015) 511–525.

DOI: 10.1016/j.jmps.2015.03.002

Google Scholar

[11] G. M. Bond, I. M. Robsertson, and H. K. Birnbaum, The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys, Acta Metallurgica. 35 (1987) 2289–2296.

DOI: 10.1016/0001-6160(87)90076-9

Google Scholar

[12] S. P. Lynch, Mechanisms of stress-corrosion cracking and liquid-metal embrittlement in AI-Zn-Mg bicrystals, Journal of Materials Science. 20 (1985) 3329–3338.

DOI: 10.1007/bf00545203

Google Scholar

[13] T. Magnin, a. Chambreuil, and B. Bayle, The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys, Acta Materialia. 44 (1996) 1457–1470.

DOI: 10.1016/1359-6454(95)00301-0

Google Scholar

[14] N. J. H. Holroyd and G. M. Scamans, Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments, Metallurgical and Materials Transactions A. 44(2013) 1230–1253.

DOI: 10.1007/s11661-012-1528-3

Google Scholar

[15] A. Cassell, Durability of lean 7xxx series aluminium alloys, thesis. (2013)1–345.

Google Scholar

[16] N. Birbilis and R. G. Buchheit, Electrochemical characteristics of intermetallic phases in aluminum alloys, Journal of Electrochemical Society. 152 (2005) B140.

DOI: 10.1149/1.1869984

Google Scholar

[17] L. Christodoulou and H.M. Flower, Hydrogen embrittlement and trapping in Al-6%-Zn-3%-Mg, Acta Metallurgica. 28 (1980) 481–487.

DOI: 10.1016/0001-6160(80)90138-8

Google Scholar

[18] C. Larignon, Mécanismes d'endommagement par corrosion et vieillissement microstructural d'éléments de structure d'aéronef en alliage d'aluminium 2024-T351, thesis. (2011).

Google Scholar

[19] Q. Puydt, Comportement mécanique de soudures en alliage d'aluminium de la série 7xxx : de la microstructure à la modélisation de la rupture, thesis, (2012).

DOI: 10.1016/j.crme.2004.09.006

Google Scholar

[20] M.B. Kannan and W. Dietzel, Pitting-induced hydrogen embrittlement of magnesium-aluminium alloy, Material Design. 42 (2012) 321–326.

DOI: 10.1016/j.matdes.2012.06.007

Google Scholar