Effect of Natural Ageing on Strength and Anisotropy in Aluminium Alloy AA 6005C

Article Preview

Abstract:

During processing of age-hardenable AA 6xxx series alloys for automotive applications the sheets may experience significant time spans between solution heat treatment at the aluminium supplier and age hardening upon the final paint bake cycle at the carmaker. Natural ageing during these pause times is known to greatly affect materials properties of autobody sheet. In the present study we explore the impact of natural ageing on the tensile properties and the in-plane anisotropy of alloy AA 6005C. Materials properties at various degrees of natural ageing are modelled with the help of a nanoscale material model NaMo, which consists of a precipitation model simulating the formation of clusters and phases upon natural ageing as input to a mechanical model simulating the evolution of yield strength and work hardening. Plastic anisotropy is modelled from the materials crystallographic texture by a visco-plastic self-consistent polycrystal-plasticity code VPSC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

688-694

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wang, W.J. Poole, S. Esmaeili, D.J. Lloyd, J.D. Embury, Precipitation strengthening of the aluminum alloy AA6111, Metall. Mater. Trans. 34A (2003) 2913–2924.

DOI: 10.1007/s11661-003-0191-0

Google Scholar

[2] T. Masuda, Y. Takaki, T. Sakurai, S. Hirosawa, Combined effect of pre-straining and pre-aging on bake-hardening behavior of an Al-0. 6 mass% Mg-1. 0 mass% Si alloy, Mater. Trans. 51 (2010) 325–332.

DOI: 10.2320/matertrans.l-m2009831

Google Scholar

[3] S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Mechanisms controlling the artificial aging of Al–Mg–Si Alloys, Acta Mater. 59 (2011) 3352–3363.

DOI: 10.1016/j.actamat.2011.02.010

Google Scholar

[4] J. Banhart, M. Liu, Y. Yong, Z. Liang, C.S.T. Chang, M. Elsayed, M.D.H. Lay, Study of ageing in Al-Mg-Si alloys by positron annihilation spectroscopy, Physica B407 (2012) 2689–2696.

DOI: 10.1016/j.physb.2012.03.028

Google Scholar

[5] L. Cao, P.A. Rometsch, M.J. Couper, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy, Mater. Sci. Eng. A559 (2013) 257–261.

DOI: 10.1016/j.scriptamat.2016.01.019

Google Scholar

[6] Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Soft X-ray XAFS studies on Al–Mg–Si alloys with different aging conditions, Metall. Mater. Trans. 45A (2014) 5906–5913.

DOI: 10.1007/s11661-014-2548-y

Google Scholar

[7] O.R. Myhr, Ø. Grong, Modelling of non-isothermal transformations in alloys containing a particle distribution, Acta Mater. 48 (2000) 1605–1615.

DOI: 10.1016/s1359-6454(99)00435-8

Google Scholar

[8] O.R. Myhr, Ø. Grong, S.J. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys, Acta Mater. 49 (2001) 65–75.

DOI: 10.1016/s1359-6454(00)00301-3

Google Scholar

[9] O.R. Myhr, Ø. Grong, K.O. Pedersen, A combined precipitation, yield strength, and work hardening model for al-mg-si alloys, Metall. Mater. Trans. 41A (2010) 2276–2289.

DOI: 10.1007/s11661-010-0258-7

Google Scholar

[10] O. R. Myhr, Ø. Grong, C. Schäfer, An extended age-hardening model for Al-Mg-Si alloys incorporating the room-temperature storage and cold deformation process stages, Metall. Mater. Trans. 46A (2015) 6018–6039.

DOI: 10.1007/s11661-015-3175-y

Google Scholar

[11] O.G. Lademo, O. Engler, S. Keller, T. Berstad, K.O. Pedersen, O.S. Hopperstad, Identification and validation of constitutive model and fracture criterion for AlMgSi alloy with application to sheet forming, Mater & Design. 30 (2009) 3005–3019.

DOI: 10.1016/j.matdes.2008.12.020

Google Scholar

[12] O. Engler, C. Schäfer, O.R. Myhr, Effect of natural ageing and pre-straining on strength and anisotropy in aluminium alloy AA 6016, Mater. Sci. Eng. A639 (2015) 65–74.

DOI: 10.1016/j.msea.2015.04.097

Google Scholar

[13] R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater. 41 (1993) 2611–2624.

DOI: 10.1016/0956-7151(93)90130-k

Google Scholar

[14] O. Engler, V. Randle, Introduction to texture analysis: macrotexture, microtexture and orientation mapping, 2nd ed., CRC Press, Boca Raton, FL, (2010).

DOI: 10.1107/s0021889810014548

Google Scholar

[15] G.J. Baczynski, R. Guzzo, M.D. Ball, D.J. Lloyd, Development of roping in an aluminum automotive alloy AA6111, Acta Mater. 48 (2000) 3361–3376.

DOI: 10.1016/s1359-6454(00)00141-5

Google Scholar

[16] O. Engler, J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review, Mater. Sci. Eng. A336 (2002) 249–262.

DOI: 10.1016/s0921-5093(01)01968-2

Google Scholar

[17] T.A. Bennett, J. Sidor, R.H. Petrov, L.A.I. Kestens, The effect of intermediate annealing on texture banding in aluminum alloy 6016, Adv. Eng. Mater. 12 (2010) 1018–1023.

DOI: 10.1002/adem.201000072

Google Scholar

[18] O. Engler, C. Schäfer, H. -J. Brinkman, Crystal-plasticity simulation of the correlation of microtexture and roping in AA 6xxx Al–Mg–Si sheet alloys for automotive applications, Acta Mater. 60 (2012) 5217–5232.

DOI: 10.1016/j.actamat.2012.06.039

Google Scholar