[1]
T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.
DOI: 10.1016/j.actamat.2013.08.018
Google Scholar
[2]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[3]
R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A528 (2011) 8198-8204.
DOI: 10.1016/j.msea.2011.07.040
Google Scholar
[4]
P.H.R. Pereira, R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, An examination of the elastic distortions of anvils in high-pressure torsion, Mater. Sci. Eng. A631 (2015) 201-208.
DOI: 10.1016/j.msea.2015.02.052
Google Scholar
[5]
S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy, Metall. Mater. Trans. A 32A (2001) 707-716.
DOI: 10.1007/s11661-001-1006-9
Google Scholar
[6]
G. Sakai, Z. Horita, T.G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Mater. Sci. Eng. A393 (2005) 344-351.
DOI: 10.1016/j.msea.2004.11.007
Google Scholar
[7]
Y. Harai, K. Edalati, Z. Horita, T.G. Langdon, Using ring samples to evaluate the processing characteristics in high-pressure torsion, Acta Mater. 57 (2009) 1147-1153.
DOI: 10.1016/j.actamat.2008.10.046
Google Scholar
[8]
R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, V.U. Kazykhanov, X. Sauvage, On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation, Scripta Mater. 63 (2010) 949-952.
DOI: 10.1016/j.scriptamat.2010.07.014
Google Scholar
[9]
J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum, Mater. Sci. Eng. A387-389 (2004) 55-59.
DOI: 10.1016/j.msea.2004.03.076
Google Scholar
[10]
G. Horváth, N.Q. Chinh, J. Gubicza, J. Lendvai, Plastic instabilities and dislocation densities during plastic deformation in Al-Mg alloys, Mater. Sci. Eng. A445-446 (2007) 186-192.
DOI: 10.1016/j.msea.2006.09.019
Google Scholar
[11]
T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Effect of Mg content on the minimum grain size of Al-Mg alloys obtained by friction stir processing, Scripta Mater. 64 (2011) 355-358.
DOI: 10.1016/j.scriptamat.2010.10.033
Google Scholar
[12]
K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, Z. Horita, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion, Acta Mater. 69 (2014).
DOI: 10.1016/j.actamat.2014.01.036
Google Scholar
[13]
K. Dám, P. Lejček, A. Michalcová, In situ TEM investigation of microstructural behaviour of superplastic Al-Mg-Sc alloy, Mater. Charact. 76 (2013) 69-75.
DOI: 10.1016/j.matchar.2012.12.005
Google Scholar
[14]
R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, B. Baudelet, Structure and deformation behaviour of Armco iron subjected to severe plastic deformation, Acta Mater. 44 (1996) 4705-4712.
DOI: 10.1016/s1359-6454(96)00156-5
Google Scholar
[15]
F. Wetscher, A. Vorhauer, R. Stock, R. Pippan, Structural refinement of low alloyed steels during severe plastic deformation, Mater. Sci. Eng. A387-389 (2004) 809-816.
DOI: 10.1016/j.msea.2004.01.096
Google Scholar
[16]
F. Wetscher, R. Pippan, S. Sturm, F. Kauffmann, C. Scheu, G. Dehm, TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion, Metall. Mater. Trans. A 37A (2006) 1963-(1968).
DOI: 10.1007/s11661-006-0138-3
Google Scholar
[17]
M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.
DOI: 10.1007/s10853-013-7687-9
Google Scholar
[18]
M. Kawasaki, S.N. Alhajeri, C. Xu, T.G. Langdon, The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion, Mater. Sci. Eng. A529 (2011) 345-351.
DOI: 10.1016/j.msea.2011.09.039
Google Scholar
[19]
M. Kawasaki, T.G. Langdon, The significance of strain reversals during processing by high-pressure torsion, Mater. Sci. Eng. A498 (2008) 341-348.
DOI: 10.1016/j.msea.2008.08.021
Google Scholar
[20]
B.B. Straumal, B. Baretzky, O.A. Kogtenkova, A.B. Straumal, A.S. Sidorenko, Wetting of grain boundaries in Al by the solid Al3Mg2 phase, J. Mater. Sci. 45 (2010) 2057-(2061).
DOI: 10.1007/s10853-009-4014-6
Google Scholar
[21]
X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy, Acta Mater. 72 (2014) 125-136.
DOI: 10.1016/j.actamat.2014.03.033
Google Scholar