Influence of Initial Heat Treatment on the Microhardness Evolution of an Al-Mg-Sc Alloy Processed by High-Pressure Torsion

Article Preview

Abstract:

An Al-3% Mg-0.2% Sc alloy was subjected to annealing or solution treatment and further processed by HPT at room temperature. Microhardness measurements were taken along the middle-sections of the discs and they demonstrated that a very substantial hardening is achieved during HPT processing regardless of the initial heat treatment. Hardness values of ~200 Hv were recorded at the edge of the samples although the microhardness distribution remained inhomogeneous along the diameters of the discs after 20 turns of high-pressure torsion. In addition, the microhardness of the solution treated Al-Mg-Sc samples continued to increase with the equivalent strain imposed by the anvils even after 30 turns of HPT processing whereas the hardness at the edges of the annealed discs saturated after 10 turns. These differences in the hardness evolution are attributed to the higher Mg content in solid solution in the case of the solution treated samples and its influence on delaying the recovery rate of this aluminium alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1471-1476

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[2] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[3] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A528 (2011) 8198-8204.

DOI: 10.1016/j.msea.2011.07.040

Google Scholar

[4] P.H.R. Pereira, R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, An examination of the elastic distortions of anvils in high-pressure torsion, Mater. Sci. Eng. A631 (2015) 201-208.

DOI: 10.1016/j.msea.2015.02.052

Google Scholar

[5] S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy, Metall. Mater. Trans. A 32A (2001) 707-716.

DOI: 10.1007/s11661-001-1006-9

Google Scholar

[6] G. Sakai, Z. Horita, T.G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Mater. Sci. Eng. A393 (2005) 344-351.

DOI: 10.1016/j.msea.2004.11.007

Google Scholar

[7] Y. Harai, K. Edalati, Z. Horita, T.G. Langdon, Using ring samples to evaluate the processing characteristics in high-pressure torsion, Acta Mater. 57 (2009) 1147-1153.

DOI: 10.1016/j.actamat.2008.10.046

Google Scholar

[8] R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, V.U. Kazykhanov, X. Sauvage, On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation, Scripta Mater. 63 (2010) 949-952.

DOI: 10.1016/j.scriptamat.2010.07.014

Google Scholar

[9] J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum, Mater. Sci. Eng. A387-389 (2004) 55-59.

DOI: 10.1016/j.msea.2004.03.076

Google Scholar

[10] G. Horváth, N.Q. Chinh, J. Gubicza, J. Lendvai, Plastic instabilities and dislocation densities during plastic deformation in Al-Mg alloys, Mater. Sci. Eng. A445-446 (2007) 186-192.

DOI: 10.1016/j.msea.2006.09.019

Google Scholar

[11] T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Effect of Mg content on the minimum grain size of Al-Mg alloys obtained by friction stir processing, Scripta Mater. 64 (2011) 355-358.

DOI: 10.1016/j.scriptamat.2010.10.033

Google Scholar

[12] K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, Z. Horita, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion, Acta Mater. 69 (2014).

DOI: 10.1016/j.actamat.2014.01.036

Google Scholar

[13] K. Dám, P. Lejček, A. Michalcová, In situ TEM investigation of microstructural behaviour of superplastic Al-Mg-Sc alloy, Mater. Charact. 76 (2013) 69-75.

DOI: 10.1016/j.matchar.2012.12.005

Google Scholar

[14] R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, B. Baudelet, Structure and deformation behaviour of Armco iron subjected to severe plastic deformation, Acta Mater. 44 (1996) 4705-4712.

DOI: 10.1016/s1359-6454(96)00156-5

Google Scholar

[15] F. Wetscher, A. Vorhauer, R. Stock, R. Pippan, Structural refinement of low alloyed steels during severe plastic deformation, Mater. Sci. Eng. A387-389 (2004) 809-816.

DOI: 10.1016/j.msea.2004.01.096

Google Scholar

[16] F. Wetscher, R. Pippan, S. Sturm, F. Kauffmann, C. Scheu, G. Dehm, TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion, Metall. Mater. Trans. A 37A (2006) 1963-(1968).

DOI: 10.1007/s11661-006-0138-3

Google Scholar

[17] M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.

DOI: 10.1007/s10853-013-7687-9

Google Scholar

[18] M. Kawasaki, S.N. Alhajeri, C. Xu, T.G. Langdon, The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion, Mater. Sci. Eng. A529 (2011) 345-351.

DOI: 10.1016/j.msea.2011.09.039

Google Scholar

[19] M. Kawasaki, T.G. Langdon, The significance of strain reversals during processing by high-pressure torsion, Mater. Sci. Eng. A498 (2008) 341-348.

DOI: 10.1016/j.msea.2008.08.021

Google Scholar

[20] B.B. Straumal, B. Baretzky, O.A. Kogtenkova, A.B. Straumal, A.S. Sidorenko, Wetting of grain boundaries in Al by the solid Al3Mg2 phase, J. Mater. Sci. 45 (2010) 2057-(2061).

DOI: 10.1007/s10853-009-4014-6

Google Scholar

[21] X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy, Acta Mater. 72 (2014) 125-136.

DOI: 10.1016/j.actamat.2014.03.033

Google Scholar