Effect of High Temperature Exposure on the Mechanical Properties of Self-Hardening Al-Based Alloy

Article Preview

Abstract:

Cost-effective, modified, self-hardening Al-based alloy is proposed for automotive and aircraft industries. AlZn10Si8Mg is produced by permanent mould casting technique, and the obtained material is re-melted to refine and modify its microstructure and to develop a mechanically more efficient alloy. Ti as grain refiner, in form of TiB, and modifier, in forms of AlSr, were added to the basic alloy composition. Microstructural analysis and impact toughness evaluation were performed at room temperature and up to 180°C. The results obtained confirm that the proposed alloy reveal good properties in the considered temperature range, and demonstrate their applicability for structural components development in the aforementioned areas and in a wide range of temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1489-1494

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Tillová, E. Ďuriníková, M. Chalupová, Structural analysis of secondary AlZn10Si8Mg cast alloy, Acta Metallurgica Slovaca, 17 (2011) 4-10.

DOI: 10.21062/ujep/x.2011/a/1213-2489/mt/11/1/11

Google Scholar

[2] I. Peter, M. Rosso, C. Castella, R. Molina, Self-hardening alloys for automotive application, Materials Science Forum, 794-796 (2014) 1221-1226.

DOI: 10.4028/www.scientific.net/msf.794-796.1221

Google Scholar

[3] W. Schneider, M.A. Kearns, M.J. McGarry, A.J. Whitehead, Comparison oft he behaviour of AlTiB and AlTiC grain refiners, Proceedings of the 1997 127th TMS Annual Meeting, (1998),  953-961.

DOI: 10.1002/9781118647783.ch49

Google Scholar

[4] A. Banerji, W. Reif, Grain refining of aluminum by TiC, Metall Trans A, 11 (1985) 2065–(2068).

DOI: 10.1007/bf02662410

Google Scholar

[5] M. Rosso, I. Peter, C. Castella, S. Lombardo, Grain refinement of self-hardening aluminum alloys, TSM, (2015).

DOI: 10.1002/9781119274780.ch118

Google Scholar

[6] A. Pacz, U.S. Patent 1, 860, 947. (1932).

Google Scholar

[7] A. Pacz, U.S. Patent 1, 387, 900 A. (1921).

Google Scholar

[8] S. Hegde, K.N. Prabhu, Modification of eutectic silicon in Al-Si alloys, Journal of Material Science, 43 (2008) 3009-3027.

DOI: 10.1007/s10853-008-2505-5

Google Scholar

[9] C.W. Onyial, B.A. Okorie , S.I. Neife2, C.S. Obayi, Structural Modification of Sand Cast Eutectic Al-Si Alloys with Sulfur/Sodium and Its Effect on Mechanical Properties, World Journal of Engineering and Technology, 1 (2013) 9-16.

DOI: 10.4236/wjet.2013.12002

Google Scholar

[10] D.R. Hamilton and R.G. Seidensticker, J Appl Phys, 31(1960) 1165.

Google Scholar

[11] M. Timple, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, The role of strontium in modifying aluminium–silicon alloys, Acta Mater., 60 (2012) 920–3928.

DOI: 10.1016/j.actamat.2012.03.031

Google Scholar

[12] M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy, 53th International Field Emission Symposium (IFES 2012), Tuscaloosa, USA Ultramicroscopy 132 (2013).

DOI: 10.1016/j.ultramic.2012.10.006

Google Scholar

[13] J. Campbell: Castings, 1st ed., Elsevier, Oxford, (1991).

Google Scholar

[14] D. Dispinar, J. Campbell, International Journal of cast metal research, 17 (2004) 280-286.

Google Scholar

[15] X. Chen, H. Geng, Y. Li, Study on the eutectic modification level of Al–7Si Alloy by computer aided recognition of thermal analysis cooling curves, Mater. Sci. Eng. A, 419 (2006) 283–289.

DOI: 10.1016/j.msea.2005.12.036

Google Scholar