[1]
Information on http: /matcalc. at.
Google Scholar
[2]
Y. Wang, Z. -K. Liu, L. -Q. Chen, C. Wolverton, First-principles calculations of β´´-Mg5Si6/α-Al interfaces, Acta Mater. 55 (2007) 5934-5947.
DOI: 10.1016/j.actamat.2007.06.045
Google Scholar
[3]
B. Sonderegger, E. Kozeschnik, Generalized nearest-neighbor broken-bond analysis of randomly oriented coherent interfaces in multicomponent fcc and bcc structures, Metal. Mater. Trans. A 40A (2009) 500-510.
DOI: 10.1007/s11661-008-9752-6
Google Scholar
[4]
B. Sonderegger, E. Kozeschnik, Size dependence of the interfacial energy in the generalized nearest-neighbor broken-bond approach, Scripta Mater. 60 (2009) 635-638.
DOI: 10.1016/j.scriptamat.2008.12.025
Google Scholar
[5]
B. Sonderegger, E. Kozeschnik, Interfacial energy of diffuse phase boundaries in the generalized broken-bond approach, Metal. Mater. Trans. A 41A (2010) 3262-3269.
DOI: 10.1007/s11661-010-0370-8
Google Scholar
[6]
J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory, Mater. Sci. Eng. A 385 (2004) 166-174.
DOI: 10.1016/j.msea.2004.06.018
Google Scholar
[7]
J. Ågren, Diffusion in phases with several components and sublattices, J. Phys. Chem. Solids 43 (1982) 421-430.
DOI: 10.1016/0022-3697(82)90152-4
Google Scholar
[8]
J. -O. Andersson, J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys. 72 (1992) 1350-1355.
DOI: 10.1063/1.351745
Google Scholar
[9]
Thermodynamic and Diffusional mobility databases ME-Fe, ME-Ni and ME-Al, MatCalc Engineering GmbH, Austria. Information on http: /matcalc-engineering. at.
Google Scholar
[10]
E. Kozeschnik, J. Svoboda, P. Fratzl, F.D. Fischer, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates II: Numerical solution and application, Mater. Sci. Eng. A 385 (2004) 157-165.
DOI: 10.1016/s0921-5093(04)00821-4
Google Scholar
[11]
E. Kozeschnik, J. Svoboda, R. Radis, F.D. Fischer, Mean-field model for the growth and coarsening of stoichiometric precipitates at grain boundaries, Modelling Simul. Mater. Sci. Eng. 18 (2010) 015011 (19pp).
DOI: 10.1088/0965-0393/18/1/015011
Google Scholar
[12]
E. Povoden-Karadeniz, P. Lang, P. Warczok, A. Falahati, W. Jun, E. Kozeschnik, CALPHAD modeling of metastable phases in the Al-Mg-Si system, CALPHAD 43 (2013) 94-104.
DOI: 10.1016/j.calphad.2013.03.004
Google Scholar
[13]
F.D. Fischer, J. Svoboda, F. Appel, E. Kozeschnik, Modeling of excess vacancy annihilation at different types of sinks, Acta Mater. 59 (2011) 3463-3472.
DOI: 10.1016/j.actamat.2011.02.020
Google Scholar
[14]
P. Lang, E. Povoden-Karadeniz, W. Mayer, A. Falahati, E. Kozeschnik, The bustling nature of vacancies in Al-alloys, Proceedings of 8th Pacific Rim Int. Congress on Adv. Mater. Proc., Wiley, 2013, 3181-3188.
DOI: 10.1007/978-3-319-48764-9_392
Google Scholar
[15]
A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, E. Kozeschnik, Thermokinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys, Int. J. Mater. Res. 101 (2010) 1089-1096.
DOI: 10.3139/146.110396
Google Scholar
[16]
C. Cayron, P.A. Buffat, Transmission electron microscopy study of the β´ phase (Al-Mg-Si alloys) and QC phase (Al-Cu-Mg-Si alloys): Ordering mechanism and crystallographic structure, Acta mater. 48 (2000) 2639-2653.
DOI: 10.1016/s1359-6454(00)00057-4
Google Scholar
[17]
D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Progress Mater. Sci. 49 (2004) 389-410.
DOI: 10.1016/s0079-6425(03)00031-8
Google Scholar
[18]
D.G. Esin, Decomposition of supersaturated solid solutions in Al-Cu-Mg-Si alloys, J. Mater. Sci. 38 (2003) 279-290.
Google Scholar
[19]
K. Chang, S. Liu, D. Zhao, Y. Du, L. Zhou, L. Chen, Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary system and its application to solidification simulation, Thermochim. Acta 512 (2011) 258-267.
DOI: 10.1016/j.tca.2010.11.009
Google Scholar