Coupling of Computational Thermodynamics with Kinetic Models for Predictive Simulations of Materials Properties

Article Preview

Abstract:

We present successful examples of CALPHAD thermodynamics-based precipitation simulations for three important alloy groups: Single-crystal Ni-base superalloy, austenitic stainless steel and hardenable Al-alloy. Underlying physical models for special features, such as, energies of diffuse interfaces between coherent precipitates and matrix, precipitation of incoherent particles at grain boundaries, evolution of excess vacancies during quenching and continuous aging and their role for metastable precipitate nucleation, are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1513-1518

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /matcalc. at.

Google Scholar

[2] Y. Wang, Z. -K. Liu, L. -Q. Chen, C. Wolverton, First-principles calculations of β´´-Mg5Si6/α-Al interfaces, Acta Mater. 55 (2007) 5934-5947.

DOI: 10.1016/j.actamat.2007.06.045

Google Scholar

[3] B. Sonderegger, E. Kozeschnik, Generalized nearest-neighbor broken-bond analysis of randomly oriented coherent interfaces in multicomponent fcc and bcc structures, Metal. Mater. Trans. A 40A (2009) 500-510.

DOI: 10.1007/s11661-008-9752-6

Google Scholar

[4] B. Sonderegger, E. Kozeschnik, Size dependence of the interfacial energy in the generalized nearest-neighbor broken-bond approach, Scripta Mater. 60 (2009) 635-638.

DOI: 10.1016/j.scriptamat.2008.12.025

Google Scholar

[5] B. Sonderegger, E. Kozeschnik, Interfacial energy of diffuse phase boundaries in the generalized broken-bond approach, Metal. Mater. Trans. A 41A (2010) 3262-3269.

DOI: 10.1007/s11661-010-0370-8

Google Scholar

[6] J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory, Mater. Sci. Eng. A 385 (2004) 166-174.

DOI: 10.1016/j.msea.2004.06.018

Google Scholar

[7] J. Ågren, Diffusion in phases with several components and sublattices, J. Phys. Chem. Solids 43 (1982) 421-430.

DOI: 10.1016/0022-3697(82)90152-4

Google Scholar

[8] J. -O. Andersson, J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys. 72 (1992) 1350-1355.

DOI: 10.1063/1.351745

Google Scholar

[9] Thermodynamic and Diffusional mobility databases ME-Fe, ME-Ni and ME-Al, MatCalc Engineering GmbH, Austria. Information on http: /matcalc-engineering. at.

Google Scholar

[10] E. Kozeschnik, J. Svoboda, P. Fratzl, F.D. Fischer, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates II: Numerical solution and application, Mater. Sci. Eng. A 385 (2004) 157-165.

DOI: 10.1016/s0921-5093(04)00821-4

Google Scholar

[11] E. Kozeschnik, J. Svoboda, R. Radis, F.D. Fischer, Mean-field model for the growth and coarsening of stoichiometric precipitates at grain boundaries, Modelling Simul. Mater. Sci. Eng. 18 (2010) 015011 (19pp).

DOI: 10.1088/0965-0393/18/1/015011

Google Scholar

[12] E. Povoden-Karadeniz, P. Lang, P. Warczok, A. Falahati, W. Jun, E. Kozeschnik, CALPHAD modeling of metastable phases in the Al-Mg-Si system, CALPHAD 43 (2013) 94-104.

DOI: 10.1016/j.calphad.2013.03.004

Google Scholar

[13] F.D. Fischer, J. Svoboda, F. Appel, E. Kozeschnik, Modeling of excess vacancy annihilation at different types of sinks, Acta Mater. 59 (2011) 3463-3472.

DOI: 10.1016/j.actamat.2011.02.020

Google Scholar

[14] P. Lang, E. Povoden-Karadeniz, W. Mayer, A. Falahati, E. Kozeschnik, The bustling nature of vacancies in Al-alloys, Proceedings of 8th Pacific Rim Int. Congress on Adv. Mater. Proc., Wiley, 2013, 3181-3188.

DOI: 10.1007/978-3-319-48764-9_392

Google Scholar

[15] A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, E. Kozeschnik, Thermokinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys, Int. J. Mater. Res. 101 (2010) 1089-1096.

DOI: 10.3139/146.110396

Google Scholar

[16] C. Cayron, P.A. Buffat, Transmission electron microscopy study of the β´ phase (Al-Mg-Si alloys) and QC phase (Al-Cu-Mg-Si alloys): Ordering mechanism and crystallographic structure, Acta mater. 48 (2000) 2639-2653.

DOI: 10.1016/s1359-6454(00)00057-4

Google Scholar

[17] D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Progress Mater. Sci. 49 (2004) 389-410.

DOI: 10.1016/s0079-6425(03)00031-8

Google Scholar

[18] D.G. Esin, Decomposition of supersaturated solid solutions in Al-Cu-Mg-Si alloys, J. Mater. Sci. 38 (2003) 279-290.

Google Scholar

[19] K. Chang, S. Liu, D. Zhao, Y. Du, L. Zhou, L. Chen, Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary system and its application to solidification simulation, Thermochim. Acta 512 (2011) 258-267.

DOI: 10.1016/j.tca.2010.11.009

Google Scholar