[1]
E. Hornbogen and R. C. Glenn, A metallographic study of precipitation of copper from alpha iron, Tran. Met. Soc. AIME 218 (1960) 1067–1070.
Google Scholar
[2]
P. J. Othen, M. L. Jenkins, G. Smith, and W. J. Phytian, Transmission electron-microscope investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni, Philps. Mag. Lett. 64 (1991) 383–391.
DOI: 10.1080/09500839108215121
Google Scholar
[3]
D. Isheim and D. N. Seidman, Nanoscale studies of segregation at coherent heterophase interfaces in alpha-Fe based systems, Surf. Interface Anal 36 (2004) 569–574.
DOI: 10.1002/sia.1703
Google Scholar
[4]
D. Isheim, M. S. Galiano, M. E. Fine, and D. N. Seidman, Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale, Acta Mater. 54 (2006) 841–849.
DOI: 10.1016/j.actamat.2005.10.023
Google Scholar
[5]
M. Schober, E. Eidenberger, H. Leitner, P. Staron, D. Reith, and R. Podloucky, A critical consideration of magnetism and composition of (bcc) Cu precipitates in (bcc) Fe, Appl. Phys. A 99 (2010) 697–704.
DOI: 10.1007/s00339-010-5725-x
Google Scholar
[6]
M. K. Miller, B. D. Wirth, and G. R. Odette, Precipitation in neutron-irradiated Fe-Cu and Fe-Cu-Mn model alloys: a comparison of APT and SANS data, Mater. Sci. Eng. A 353 (2003) 133–139.
DOI: 10.1016/s0921-5093(02)00679-2
Google Scholar
[7]
E. Kozeschnik, Thermodynamic prediction of the equilibrium chemical composition of critical nuclei: Bcc Cu precipitation in α-Fe, Scr. Mater. 59 9 (2008) 1018 – 1021.
DOI: 10.1016/j.scriptamat.2008.07.008
Google Scholar
[8]
F. Soisson, A. Barbu, and G. Martin, Monte carlo simulations of copper precipitation in dilute iron-cooper alloys during thermal aging and under electron irradiation, Acta Mater. 44 (1996) 3789–3800.
DOI: 10.1016/1359-6454(95)00447-5
Google Scholar
[9]
F. Soisson and C. C. Fu, Cu-precipitation kinetics in alpha-Fe from atomistic simulations: Vacancy-tranping effects and Cu-cluster mobility, Phys. Rev. B 76 (2007) 214102.
DOI: 10.1103/physrevb.76.214102
Google Scholar
[10]
P. Warczok, D. Reith, M. Schober, H. Leitner, R. Podloucky, and E. Kozeschnik, Investigation of Cu precipitation in bcc-Fe – Comparison of numerical analysis with experiment, IJMR 102 (2011) 709–716.
DOI: 10.3139/146.110524
Google Scholar
[11]
R. J. Allen, P. B. Warren, and P. R. ten Wolde, Sampling Rare Switching Events in Biochemical Networks, Phys. Rev. Lett. 94 1 (2005) 018104.
DOI: 10.1103/physrevlett.94.018104
Google Scholar
[12]
S. Jungblut and C. Dellago, Caveats of mean first-passage time methods applied to the crystallization transition: Effects of non-Markovianity, J. Chem. Phys. 142 (2015) 064103.
DOI: 10.1063/1.4907364
Google Scholar
[13]
R. J. Allen, D. Frenkel, and P. R. ten Wolde, Simulating rare events in equilibrium or nonequilibrium stochastic systems, J. Chem. Phys. 124 (2006).
DOI: 10.1063/1.2140273
Google Scholar
[14]
T. S. van Erp, D. Moroni, and P. G. Bolhuis, A novel path sampling method for the calculation of rate constants, J. Chem. Phys. 118 17 (2003) 7762–7774.
DOI: 10.1063/1.1562614
Google Scholar
[15]
J. H. ter Horst and D. Kashchiev, Determination of the nucleus size from the growth probability of clusters, J. Chem. Phys. 119 (2003) 2241–2246.
DOI: 10.1063/1.1585020
Google Scholar
[16]
J. Wedekind, R. Strey, and D. Reguera, New method to analyze simulations of activated processes, J. Chem. Phys. 126 (2007) 134103.
DOI: 10.1063/1.2713401
Google Scholar
[17]
information on http: /matcalc. at.
Google Scholar
[18]
G. Stechauner and E. Kozeschnik, Thermo-kinetic modeling of Cu precipitation in α-Fe, Acta Mater. 100 (2015) 135–146.
DOI: 10.1016/j.actamat.2015.08.042
Google Scholar