Influence of Different pH and Fluoride Addition on the Corrosion Behavior of the Sintered CoCr Alloy Ceramill Sintron Compared to the Cast Alloy Girobond NB

Article Preview

Abstract:

In addition to conventionally casting, dental metallic framework can be manufactured using different CAD/CAM technologies (selective laser melting, milling). The milling of porous CoCr blanks followed by sintering under protective gas is a new 2012 introduced dental technology called Ceramill Sintron. For this new material so far, there exist few studies on the corrosion behavior. The aim of this study was to investigate the influence of different pH values as well as fluoride additions on the corrosion behavior of the sintered CoCr alloy compared to the cast condition by electrochemical corrosion measurements according to ISO 10271.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1709-1714

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.A.S. Sampaio, J.W.J. Silva, H.A. Acciari, R.Z. Nakazato, E.N. Codaro, H. de Felipe, Influence of Ni and Cr content on corrosion resistance of Ni-Cr-Mo Alloys for fixed dental prostheses in 0. 05% NaF aqueous solution, MSA 1 (2010), 369-372.

DOI: 10.4236/msa.2010.16053

Google Scholar

[2] N.A.S. Sampaio, J.W.J. Silva, H.A. Acciari, E.N. Codaro, Corrosion study of Ni-Cr-Mo alloys for fixed dental prostheses in an aqueous solution of 0. 05% NaF and in commercial mouthwashes, IJEIT 2 (2013), 152-156.

DOI: 10.4236/msa.2010.16053

Google Scholar

[3] F.C. Giacomelli, C. Giacomelli, A. Spinelli, Behavior of a Co-Cr-Mo biomaterial in simulated body fluid solutions studied by electrochemical and surface analysis techniques, J Brazil Chem Soc 15 (2004), 541-547.

DOI: 10.1590/s0103-50532004000400016

Google Scholar

[4] X. Yang, N. Xiang, B. Wei, Effect of fluoride content on ion release from cast and selective laser melting-processed Co-Cr-Mo alloys, J Prosthet Dent 112 (2014), 1212-1216.

DOI: 10.1016/j.prosdent.2013.12.022

Google Scholar

[5] S.H. Tuna, N.Ö. Pekmez, I. Kürkcüoglu, Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering and casting methods, J Prosthet Dent 113 (2015), 725-734.

DOI: 10.1016/j.prosdent.2015.02.031

Google Scholar

[6] DIN EN ISO 10271 (2011): Dentistry – Corrosion test methods for metallic materials, in: DIN-Taschenbuch 267/1, Zahnheilkunde 1, Werkstoffe, Beuth Verlag, Berlin, 2013, 436-470.

Google Scholar

[7] DIN EN ISO 22674 (2006): Dentistry – Metallic materials for fixed and removable restorations and appliances, in: DIN-Taschenbuch 267/1, Zahnheilkunde 1, Werkstoffe, Beuth Verlag, Berlin, 2013, 524-553.

Google Scholar

[8] K. -P. Krug, A. W. Knauber, F.P. Nothdurft, Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or newly developed sintered cobalt-chromium alloy, Clin Oral Invest 19 (2015), 401-411.

DOI: 10.1007/s00784-014-1233-2

Google Scholar

[9] A. Klar, J. Illner, D. Monsees, Labortechnischer Vergleich: Gießen, Fräsen und Lasersintern einer CoCrMo-Brücke, Zahntech Mag, 14 (2010), 386-397.

Google Scholar