Microstructural Evolution of AZ31 under the Application of High Density Electric Current Pulses

Article Preview

Abstract:

The microstructural evolution in annealed Mg-3Al-1Zn (AZ31) magnesium alloy during high density electric current pulses (ECP) treatment is investigated by using a same current density with different processing numbers. It is found when the processing number of the ECP treatment is not greater than four times, the grains are refined and more homogenized, and the texture intensity obtained from the (0002) pole figure appears an obvious enhancement from 11.22 to 22.88. However, increasing the repeated ECP processing number will cause the coarsening of grain size and the decreasing of the texture intensity. The mechanism of the microstructural evolution during ECP treatment is discussed from the point of view of grain boundary motion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2055-2060

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.F. Sprecher, S.L. Mannan, H. Conrad, On the mechanisms for the electroplastic effect in metals, Acta Metall. 34 (1986) 1145-1162.

Google Scholar

[2] J. Proost, I. Samajdar, B. Verlinden, P. Van Houtte, K. Maex, L. Delaey, The role of grain boundary structure on electromigration-induced drift in pure Al and Al (0. 5wt% Cu), Scr. Mater. 39 (1998) 1039-1045.

DOI: 10.1016/s1359-6462(98)00306-6

Google Scholar

[3] H. Conrad, Z. Guo, A.F. Sprecher, Effect of an electric field on the recovery and recrystallization of Al and Cu, Scr. Metall. 23 (1989) 821-824.

DOI: 10.1016/0036-9748(89)90252-4

Google Scholar

[4] R.S. Mishra, S.H. Risbud, A.K. Mukherjee, Influence of initial crystal structure and electrical pulsing on densification of nanocrystalline alumina powder, J. Mater. Res. 13 (1998) 86-89.

DOI: 10.1557/jmr.1998.0013

Google Scholar

[5] Z.H. Lai, H. Conrad, Y.S. Chao, S.Q. Wang, J. Sun, Effect of electropulsing on the microstructure and properties of iron-based amorphous alloys, Scr. Metall. 23 (1989) 305-310.

DOI: 10.1016/0036-9748(89)90372-4

Google Scholar

[6] H. Conrad, N. Karam, S. Mannan, Effect of prior cold work on the influence of electric current pulses on the recrystallization of copper, Scr. Metal. 18 (1984) 275-280.

DOI: 10.1016/0036-9748(84)90522-2

Google Scholar

[7] Y.Z. Zhou, S.H. Xiao, J.D. Guo, Recrystallized microstructure in cold worked brass produced by electropulsing treatment, Mater. Lett. 58 (2004) 1948-(1951).

DOI: 10.1016/j.matlet.2003.11.035

Google Scholar

[8] L. Guan, G.Y. Tang, Y.B. Jiang, P.K. Chu, Texture evolution in cold-rolled AZ31 magnesium alloy during electropulsing treatment, J. Alloys. Compd. 487 (2009) 309-313.

DOI: 10.1016/j.jallcom.2009.07.114

Google Scholar

[9] W.B. Dai, X.L. Wang, H.M. Zhao, X. Zhao, Effect of electric current on microstructural evolution in a cold-rolled 3% Si steel, Mater. Trans. 53 (2012) 229-233.

DOI: 10.2320/matertrans.m2011272

Google Scholar

[10] X.L. Wang, W.B. Dai, C.W. Ma, X. Zhao, Effect of electric current direction on recrystallization rate and texture of a Cu-Zn alloy, J. Mater. Res. 28 (2013) 1378-1385.

DOI: 10.1557/jmr.2013.86

Google Scholar

[11] K. Okazaki, M. Kagawa, H. Conrad, An evaluation of contributions of skin, pinch and heating effects to the electroplastic effect in titanium, Mater. Sci. Eng. 45 (1980) 109-116.

DOI: 10.1016/0025-5416(80)90216-5

Google Scholar

[12] X.N. Du, B.Q. Wang, J.D. Guo, Formation of nanocrystalline surface of a Cu-Zn alloy under electropulsing surface treatment, J. Mater. Res. 22 (2007) 1947-(1953).

DOI: 10.1557/jmr.2007.0256

Google Scholar

[13] M. Nakada, Y. Shiohara, M.C. Flemings, Modification of solidification structures by pulse electric discharging, ISIJ International 30 (1990) 27-33.

DOI: 10.2355/isijinternational.30.27

Google Scholar

[14] H. Conrad, Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid, Mater. Sci. Eng. A 287 (2000) 205-212.

DOI: 10.1016/s0921-5093(00)00777-2

Google Scholar

[15] H. Conrad, A.F. Sprecher, Dislocations in Solids, Elsevier Publisher B.V., Amsterdam, The Netherlands, 1989, pp.497-512.

Google Scholar

[16] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Second ed., Elsevier Ltd, Kidlington, Oxford, UK, (2002).

Google Scholar

[17] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jones, Current issues in recrystallization: a review, Mater. Sci. Eng. A 238 (1997) 219-274.

Google Scholar

[18] S.H. Xiao, J.D. Guo, S.X. Li, The effect of electropulsing on dislocation structures in [-233] coplanar double-slip-oriented fatigued copper single crystals, Philos. Mag. Lett. 82 (2002) 617-622.

DOI: 10.1080/0950083021000030397

Google Scholar

[19] D.W. Tang, B.L. Zhou, H. Cao, G.H. He, Thermal-stress relaxation behavior in thin-films under transient laser-pulse heating, J. Appl. Phys. 73 (1993) 3749-3752.

DOI: 10.1063/1.352907

Google Scholar