Evolution of Recrystallization Textures in Cold-Rolled Commercially Pure Aluminum

Article Preview

Abstract:

The evolution of recrystallization texture in commercially pure aluminum sheet cold-rolled by 90% reduction in thickness was measured by Juul Jensen et al. The cold-rolling texture consisted of the Goss {110}<001>, Brass {110}<112>, S {123}<634>, and copper {112}<111> components. When the cold-rolled aluminum sheet was annealed at temperatures between 253 and 341°C for times between 5 min and 20 h., the cube {001}<100> component evolved. The evolution of the cube texture cannot be explained by either the oriented nucleation theory by Burgers and Louwerse or the oriented growth theory by Barrett. The cube texture evolution originates from the Copper component by the strain-energy-release-maximization (SERM) theory by Lee. Once the Cube oriented, dislocation free nuclei evolve, they are in the best position to grow at the expense of neighboring deformed high energy grains of the Goss, Brass, S, and Copper orientations, and the volume fractions of the Goss, Brass, S, and copper components would decrease. However, the volume fraction of the Goss component increased a little at annealing temperatures of 253 and 278°C, at variance with expectation. Low stacking-fault-energy alloys with the brass {110}<112> rolling texture evolve the {236}<385> texture after recrystallization, whereas high stacking-fault-energy alloys with the brass rolling texture evolve the Goss texture after recrystallization by the SERM theory, resulting in the increase of the volume fraction of the Goss texture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2365-2370

Citation:

Online since:

November 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Juul Jensen, N. Hansen, F.J. Humphreys, Texture development during Rex of aluminum containing large particles, Acta metall. 33 (1985) 2155-2162.

DOI: 10.1016/0001-6160(85)90176-2

Google Scholar

[2] J. -H. Ryu, Y. -S. Lee, D.N. Lee, The effect of precipitation on the evolution of Rex textures in an AA8011 aluminum alloy sheet, Met. Mater. Int. 7 (2001) 251-256.

DOI: 10.1007/bf03026983

Google Scholar

[3] W.G. Burgers, P.C. Louwerse, Über den Zusammenhang zwischen Deformationsvorgang und Rekristallisationstrextur bei Aluminium, Z. Physik 61 (1931) 605-678.

DOI: 10.1007/bf01390982

Google Scholar

[4] C.S. Barrett, Rex texture in aluminum after compression, Trans. AIME. 137 (1940) 128-145.

Google Scholar

[5] S. -H. Hong and D.N. Lee, The evolution of the cube Rex textures in cold rolled copper sheets, Mater. Sci. Eng. A351 (2003) 133-147.

Google Scholar

[6] D.N. Lee, Scr. Metall. Mater. The evolution of Rex textures from deformation textures, 32 (1995) 1689-1694.

Google Scholar

[7] D.N. Lee, S. Kang, J. Yang, Relationships between initial and recrystallization textures of copper electrodeposits, Plat. Surf. Fin. 82 (1995) 76-79.

Google Scholar

[8] D.N. Lee, Strain energy release maximization model for evolution of Rex textures, Inter. J. Mech. Sci. 42 (2000) 1645-1678.

Google Scholar

[9] D.N. Lee, Relationship between deformation and Rex textures, Phil. Mag. 85 (2005) 297-322.

Google Scholar

[10] D.N. Lee, H.N. Han, Rex textures of metals and alloys, in: P. Wilson (Ed. ), Recent developments in the Study of Recrystallization, ISBN 978-953-51-0962-4, Intech, 2013, Chapter 1, pp.3-59.

Google Scholar

[11] H. Honneff, H. Mecking, A method for the determination of the active slip systems and orientation changes during single crystal deformation. Proc. ICOTOM 5, Springer-Verlag, Berlin, 1978, p.265.

DOI: 10.1007/978-3-642-81313-9_24

Google Scholar

[12] P. Van Houtte, Adaptation of the Taylor theory to the typical substructure of some cold rolled fcc metals, Proc. ICOTOM 6, The Iron and Steel Institute of Japan, Tokyo, Japan, 1981, p.428.

Google Scholar

[13] D.N. Lee, H.T. Jeong, Rex texture of aluminum bicrystals with S orientations deformed by channel die compression, Mater. Sci. Eng. A269 (1999) 49-58.

DOI: 10.1016/s0921-5093(99)00130-6

Google Scholar

[14] T. Steffens, C. Schwink, A. Korner, H.P. Karnthaler, Transmission electron microscopy study of the stacking-fault energy and dislocation structure in copper-manganese alloys, Phil. Mag. A56 (1987) 161-173.

DOI: 10.1080/01418618708205159

Google Scholar

[15] P.A. Beck, H. Hu, Annealing textures in rolled fcc cubic metals, Trans. AIME. 194 (1952) 83-90.

DOI: 10.1007/bf03397656

Google Scholar

[16] Y.C. Liu, R.H. Richman, Trans AIME 218 (1960) 688-699.

Google Scholar

[17] R.H. Richman, Y.C. Liu, Trans AIME 221 (1961) 720.

Google Scholar

[18] W.B. Hutchinson, F.M.C. Besag, C.V. Honess, The annealing behavior of cold worked copper-25 at. % gold, Acta metall. 21 (1973) 1685.

DOI: 10.1016/0001-6160(73)90112-0

Google Scholar

[19] K.H. Virnich, K. Lücke, Proc. ICOTOM 5, Springer-Verlag, Berlin, 1978, p.397.

Google Scholar

[20] O. Engler, J. Hirth, K. Lücke, Z. Metallkd. 86 (1995) 475.

Google Scholar

[21] L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading. MA, 1975, p.145.

Google Scholar

[22] J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, Y.M. Koo, In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels, Acta mater. 60 (2012) 2290.

DOI: 10.1016/j.actamat.2011.12.043

Google Scholar

[23] D.N. Lee, H. -J. Shin, S. -H. Hong, The evolution of the cube, rotated cube and Goss Rex textures in rolled copper and Cu-Mn alloys, Key Eng. Mater. 233-236 (2003) 515-520.

DOI: 10.4028/www.scientific.net/kem.233-236.515

Google Scholar