Phase Stability Study of the Shape Memory Alloy CuAl-X (X: Be, Zn, Ti, Ni, Ag and Au) by Ab Initio Calculations

Article Preview

Abstract:

Shape memory alloys (SMA) have been at the forefront of research in recent years. They have been used for a wide variety of applications in various fields. This work presents a brief study at the atomic scale of Cu-Al based Shape Memory Alloys. Using first-principles Density Functional Theory (DFT) method, the stability of different austenitic and martensitic phases of Cu3Al, the effect of intrinsic vacancies, the doping effect by an element X (X = Be, Zn, Ti, Ni, Ag and Au) have been studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-255

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Lexcellent, « Les alliages à mémoire de forme. », Edition Lavoisier (2013).

Google Scholar

[2] E. Patoor, M. Berveiller, Technologie des Alliages à Mémoire de Forme, Edition Hermès (1994).

Google Scholar

[3] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

Google Scholar

[4] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

Google Scholar

[5] W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, WILEY-VCH (2001).

Google Scholar

[6] The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (URL http: /www. abinit. org).

Google Scholar

[7] X. Gonze and al., Computer Physics Communications 180, 2582-2615 (2009).

Google Scholar

[8] X. Gonze and al., Computational Materials Science 25, 478-492 (2002).

Google Scholar

[9] P. E. Blöchl, Phys. Rev. B, Vol 50, 17953, (1994).

Google Scholar

[10] M. Torrent and al., Computational Materials Science 42, 337, (2008).

Google Scholar

[11] M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).

Google Scholar

[12] N. Troullier, J. L. Martins, Phys. Rev. B, Vol 43, N 3, (1991).

Google Scholar

[13] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1991).

Google Scholar

[14] P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

Google Scholar

[15] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

Google Scholar

[16] J. Schlegel, Comp. Chem. 3, 214 (1982).

Google Scholar

[17] M. C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

Google Scholar

[18] M. Hansen, Constitution of Binary Alloys, Second Edition, McGraw-Hill Book Company, Inc., New York, 84-90 (1958).

Google Scholar

[19] F. D. Murnaghan, Proceedings of the National Academy of Sciences of the United States of America, vol. 30, (1944).

Google Scholar

[20] M. J. Mehl, Phys. Rev. B 47, 2493, (1993).

Google Scholar

[21] W. Witt, Z. Naturforsch, A, 22A, 92 (1967).

Google Scholar

[22] J. Gui & al., J. Phys. : Condens. Matter 6, 4601-4614 (1994).

Google Scholar

[23] M. E. Straumanis, L. S. Yu Acta Cryst., A25, 676 (1969).

Google Scholar

[24] T. Tian, Solid State Communications 156, 69-75 (2013).

Google Scholar

[25] F. Moreau, PhD Thesis of University of Metz, France, (1998).

Google Scholar

[26] S. Belkahla, PhD Thesis of INSA, Lyon, France, (1990).

Google Scholar

[27] F. Apostol, Y. Mishin, Phys. Rev. B, 83, 054116 (2011).

Google Scholar

[28] S. Berveiller, B. Malard, J. Wright, E. Patoor, Acta Materalia, 59, 3636-3645 (2011).

Google Scholar

[29] S. B. Zhang, S.H. Wei., Phys. Rev. B. 57, 9642-9656 (1998).

Google Scholar

[30] S. H. Wei, S. B. Zhang, Phys. Rev. B. 85, 7214-7218 (1999).

Google Scholar