Thermal Plasticity Index of Nanostructured N-Based Coatings on HSS 6-5-2 (1.3343) Tool Steel

Article Preview

Abstract:

Nowadays, cutting tools, designed to be used for machining without lubricants, are developed to improve the high working speed capabilities. With this respect, quaternary Ti-and N-based coatings are able to significant increase hardness, wear resistance and high temperature oxidation resistance. One of the major drawbacks still consists on the limited thermal stability of such coatings, which is reported to be about 600°C. In the present study, thermal stability studies of a nanostructured multi-layered N-based (AlTiCrxN1-x) coating on a HSS 6-5-2 tool steel were carried out. Two quantities were calculated out of the hardness and elastic modulus of the coatings. One is the ratio H/E that represents the coating resistance to compression without failure; another one is H3/E2, which provides information on the specific contact pressure limit without failure. It was found that, by using the less demanding thermal cycling mode, the coating ability to plastically deform without damage, is retained up to 800-1000°C. The highest, and more effective coating plasticity index was obtained by using the less demanding cycling mode, while, the other two modes induced a continuous index decrease with temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-267

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kawate, A.K. Hashimoto, T. Suzuki, Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films, Surf. Coat. Technol. 165 (2003) 163-7.

DOI: 10.1016/s0257-8972(02)00473-5

Google Scholar

[2] W. Kalss, A. Reiter, V. Derflinger, C. Gey, J.L. Endrino, Modern coatings in high performance cutting applications, Int. J. Refract. Met. H 24 (2006) 399-404.

DOI: 10.1016/j.ijrmhm.2005.11.005

Google Scholar

[3] H. Willmann, P.H. Mayrhofer, P.O.A. Persson, A.E. Reiter, L. Hultman, C. Mitterer, Thermal stability of Al–Cr–N hard coatings, Scripta Mater. 54 (2006) 1847-51.

DOI: 10.1016/j.scriptamat.2006.02.023

Google Scholar

[4] A.E. Reiter, V.H. Derflinger, B. Hasenmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation, Surf. Coat. Technol., 200 (2005) 2114-22.

DOI: 10.1016/j.surfcoat.2005.01.043

Google Scholar

[5] C. Mitterer, P.H. Mayrhofer, J. Musil, Thermal stability of PVD hard coatings, Vacuum 71 (2003) 279-84.

DOI: 10.1016/s0042-207x(02)00751-0

Google Scholar

[6] P.C. Yashar, W.D. Sproul, Nanometer scale multilayered hard coatings, Vacuum, 55 (1999) 179-90.

DOI: 10.1016/s0042-207x(99)00148-7

Google Scholar

[7] D.G. Kim, T.Y. Seong, Y.J. Baik, Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition, Surf. Coat. Technol., 153 (2002) 79-83.

DOI: 10.1016/s0257-8972(01)01543-2

Google Scholar

[8] M. Shinn, L. Hultman, S.A. Barnett, Growth, structure and microhardness of epitaxial TiN/ NbN superlattices, J. Mater. Res., 7 (1992) 901-11.

DOI: 10.1557/jmr.1992.0901

Google Scholar

[9] F. Ali, B.S. Park, J.S. Kwak, Effect of number of bi-layers on properties of TiN/TiAlN multilayer coatings, J. Ceramic Proc. Res., 14 (2013) 476-9.

Google Scholar

[10] Q. Yang, C. He, L.R. Zhao, J.P. Immarigeon, Preferred orientation and hardness enhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering, Scripta Mater. 46 (2002) 293-7.

DOI: 10.1016/s1359-6462(01)01241-6

Google Scholar

[11] J. Lin, J.J. Moore, B. Mishra, M. Pinkas, X. Zhang, W.D. Sproul, CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses, Thin Solid Films, 517 (2009) 5798-804.

DOI: 10.1016/j.tsf.2009.02.136

Google Scholar

[12] U. Bardi, S.P. Chenakin, F. Ghezzi, C. Giolli, A. Goruppa, A. Lavacchi, E. Miorin, C. Paruga, A. Tolstogouzov, High-temperature oxidation of CrN/AlN multilayer coatings, Appl. Surf. Sci., 252 (2005) 1339-49.

DOI: 10.1016/j.apsusc.2005.02.105

Google Scholar

[13] S.K. Tien, J.G. Duh, Effect of heat treatment on mechanical properties and microstructure of CrN/AlN multilayer coatings, Thin Solid Films 494 (2006) 173-8.

DOI: 10.1016/j.tsf.2005.08.198

Google Scholar

[14] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear, 246 (2000) 1-11.

DOI: 10.1016/s0043-1648(00)00488-9

Google Scholar

[15] M. Cabibbo, P. Ricci, R. Cecchini, Z. Rymuza, J. Sullivan, S. Dub, S. Cohen,: An international round-robin calibration protocol for nanoindentation measurements, Micron, 43 (2012) 215-22.

DOI: 10.1016/j.micron.2011.07.016

Google Scholar

[16] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-83.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[17] Y. Tanaka, N. Ichimiya, Y. Onishi, Y. Yamada, Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications, Surf. Coat. Technol., 146–147 (2001) 215-21.

DOI: 10.1016/s0257-8972(01)01391-3

Google Scholar

[18] P. -P. Choi, I. Povstugar, J. -P. Ahn, A. Kostka, D. Raabe, Thermal stability of TiAlN/CrN multilayer coatings studied by atom probe tomography, Ultramicroscopy, 111 (2011) 518-23.

DOI: 10.1016/j.ultramic.2010.11.012

Google Scholar

[19] H. Barshilia, M.S. Prakash, A. Jain, K.S. Rajam, Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films, Vacuum, 77 (2005) 169-79.

DOI: 10.1016/j.vacuum.2004.08.020

Google Scholar

[20] M. Cabibbo, N. Clemente, M. El Mehtedi, A.H. Hamouda, F. Musharavati, E. Santecchia, S. Spigarelli, Constitutive analysis for the quantification of hardness decay in a superlattice CrN/NbN hard-coating, Surf. Coat. Technol., 275 (2015) 155-66.

DOI: 10.1016/j.surfcoat.2015.05.024

Google Scholar

[21] B.D. Beake, G.S. Fox-Rabinovich, Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining, Surf. Coat. Technol., 255 (2014) 102-11.

DOI: 10.1016/j.surfcoat.2014.02.062

Google Scholar