Electrochemical Behaviors of Biomedical Nanograined β-Type Titanium Alloys

Article Preview

Abstract:

The microstructural evolution and its effect on biocompatibility of TNTZ through HPT processing were investigated systematically in this study. TNTZAHPT shows an enhanced mechanical biocompatibility, which is characterized by a higher tensile strength (1375 MPa) and hardness (450 HV) than those of TNTZST, TNTZAT, and Ti64 ELI while maintaining a relatively low Young’s modulus. In this study, such microstructural refinement of TNTZ and its effect on electrochemical biocompatibility through HPT processing are investigated systematically in this study. The microstructure of TNTZAT consists of randomly distributed needle-like α precipitates in the equiaxed β grains with a diameter of approximately 40 m. The microstructure of TNTZAHPT consists of nanograined (NG) elongated β grains that have subgrains of non-uniform morphologies resulting from distortion by severe torsional deformation. Furthermore, the β grains and subgrains are surrounded by non-equilibrium grain boundaries. The needle-like α precipitates are completely refined to a nanograined. TNTZAHPT exhibits an enhanced combination of excellent corrosion performance and improved cellular response compared to TNTZST, TNTZAT, and Ti64 ELI.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2549-2554

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 1998; 243: 244–9. doi: 10. 1016/S0921-5093(97)00808-3.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar

[2] Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 2008; 1: 30–42. doi: 10. 1016/j. jmbbm. 2007. 07. 001.

Google Scholar

[3] Zhilyaev A, Langdon T. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci 2008; 53: 893–979. doi: 10. 1016/j. pmatsci. 2008. 03. 002.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[4] Valiev RZ, Islamgaliev RK, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 2000; 45: 103–89.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[5] Thorpe SJ, Ramaswami B, Aust KT. Corrosion and Auger Studies of a Nickel‐Base Metal‐Metalloid Glass: II . The Effect of Elemental Interactions in the Breakdown of Passivity and Localized Corrosion of Metglass 2826A. Elsevier; 1988. doi: 10. 1016/B978-0-08-087780-8. 00025-5.

DOI: 10.1002/chin.198851027

Google Scholar

[6] Rofagha R, Erb U, Ostrander D, Palumbo G, Aust KT. The effects of grain size and phosphorus on the corrosion of nanocrystalline Ni-P alloys. Nanostructured Mater 1993; 2: 1–10. doi: 10. 1016/0965-9773(93)90044-C.

DOI: 10.1016/0965-9773(93)90044-c

Google Scholar

[7] Misra RDK, Thein-Han WW, Pesacreta TC, Hasenstein KH, Somani MC, Karjalainen LP. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures. Acta Biomater 2009; 5: 1455–67. doi: 10. 1016/j. actbio. 2008. 12. 017.

DOI: 10.1016/j.actbio.2008.12.017

Google Scholar

[8] Misra RDK, Thein-Han WW, Mali SA, Somani MC, Karjalainen LP. Cellular activity of bioactive nanograined/ultrafine-grained materials. Acta Biomater 2010; 6: 2826–35. doi: 10. 1016/j. actbio. 2009. 12. 017.

DOI: 10.1016/j.actbio.2009.12.017

Google Scholar

[9] Yilmazer H, Niinomi M, Cho K, Nakai M, Hieda J, Sato S, et al. Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion. Acta Mater 2014; 80: 172–82. doi: 10. 1016/j. actamat. 2014. 07. 041.

DOI: 10.1016/j.actamat.2014.07.041

Google Scholar

[10] Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, et al. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C Mater Biol Appl 2013; 33: 2499–507. doi: 10. 1016/j. msec. 2013. 01. 056.

DOI: 10.1016/j.msec.2013.01.056

Google Scholar

[11] Akahori T, Niinomi M, Fukui H, Ogawa M, Toda H. Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C, vol. 25, 2005, p.248.

DOI: 10.1016/j.msec.2004.12.007

Google Scholar

[12] Sakai G, Nakamura K, Horita Z, Langdon TG. Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A 2005; 406: 268–73. doi: 10. 1016/j. msea. 2005. 06. 049.

DOI: 10.1016/j.msea.2005.06.049

Google Scholar

[13] Gubicza J, Nam NH, Balogh L, Hellmig RJ, Stolyarov V V, Estrin Y, et al. Microstructure of severely deformed metals determined by X-ray peak profile analysis. J Alloys Compd 2004; 378: 248–52. doi: 10. 1016/j. jallcom. 2003. 11. 162.

DOI: 10.1016/j.jallcom.2003.11.162

Google Scholar

[14] Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG. An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J Mater Res 2011; 11: 1880–90. doi: 10. 1557/JMR. 1996. 0239.

DOI: 10.1557/jmr.1996.0239

Google Scholar

[15] Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 2004; 3: 511–6. doi: 10. 1038/nmat1180.

DOI: 10.1038/nmat1180

Google Scholar

[16] Nazarov AA, Romanov AE, Valiev RZ. On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall Mater 1993; 41: 1033–40. doi: 10. 1016/0956-7151(93)90152-I.

DOI: 10.1016/0956-7151(93)90152-i

Google Scholar

[17] Hao YL, Yang R, Niinomi M, Kuroda D, Zhou YL, Fukunaga K, et al. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4. 6Zr in relation to α" martensite. Metall Mater Trans A 2002; 33: 3137–44. doi: 10. 1007/s11661-002-0299-7.

DOI: 10.1007/s11661-002-0299-7

Google Scholar

[18] Güleryüz H, Cimenoğlu H. Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy. Biomaterials 2004; 25: 3325–33. doi: 10. 1016/j. biomaterials. 2003. 10. 009.

DOI: 10.1016/j.biomaterials.2003.10.009

Google Scholar

[19] Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: Biomaterials 2002; 23: 491–501. doi: 10. 1016/S0142-9612(01)00131-4.

DOI: 10.1016/s0142-9612(01)00131-4

Google Scholar

[20] Niinomi M, Kuroda D, Fukunaga K, Morinaga M, Kato Y, Yashiro T, et al. Corrosion wear fracture of new β type biomedical titanium alloys. Mater Sci Eng A 1999; 263: 193–9. doi: 10. 1016/S0921-5093(98)01167-8.

DOI: 10.1016/s0921-5093(98)01167-8

Google Scholar

[21] Zhou YL, Niinomi M, Akahori T, Fukui H, Toda H. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Mater Sci Eng A 2005; 398: 28–36. doi: 10. 1016/j. msea. 2005. 03. 032.

DOI: 10.1016/j.msea.2005.03.032

Google Scholar

[22] Okazaki Y. A New Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr Opin Solid State Mater Sci 2001; 5: 45–53. doi: 10. 1016/S1359-0286(00)00025-5.

DOI: 10.1016/s1359-0286(00)00025-5

Google Scholar

[23] Geetha M, Kamachi Mudali U, Gogia A., Asokamani R, Raj B. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros Sci 2004; 46: 877–92. doi: 10. 1016/S0010-938X(03)00186-0.

DOI: 10.1016/s0010-938x(03)00186-0

Google Scholar

[24] Davis JR. Corrosion Understanding the Basics. Materials Park: ASM International; (2000).

Google Scholar