[1]
Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 1998; 243: 244–9. doi: 10. 1016/S0921-5093(97)00808-3.
DOI: 10.1016/s0921-5093(97)00808-3
Google Scholar
[2]
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 2008; 1: 30–42. doi: 10. 1016/j. jmbbm. 2007. 07. 001.
Google Scholar
[3]
Zhilyaev A, Langdon T. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci 2008; 53: 893–979. doi: 10. 1016/j. pmatsci. 2008. 03. 002.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[4]
Valiev RZ, Islamgaliev RK, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 2000; 45: 103–89.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[5]
Thorpe SJ, Ramaswami B, Aust KT. Corrosion and Auger Studies of a Nickel‐Base Metal‐Metalloid Glass: II . The Effect of Elemental Interactions in the Breakdown of Passivity and Localized Corrosion of Metglass 2826A. Elsevier; 1988. doi: 10. 1016/B978-0-08-087780-8. 00025-5.
DOI: 10.1002/chin.198851027
Google Scholar
[6]
Rofagha R, Erb U, Ostrander D, Palumbo G, Aust KT. The effects of grain size and phosphorus on the corrosion of nanocrystalline Ni-P alloys. Nanostructured Mater 1993; 2: 1–10. doi: 10. 1016/0965-9773(93)90044-C.
DOI: 10.1016/0965-9773(93)90044-c
Google Scholar
[7]
Misra RDK, Thein-Han WW, Pesacreta TC, Hasenstein KH, Somani MC, Karjalainen LP. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures. Acta Biomater 2009; 5: 1455–67. doi: 10. 1016/j. actbio. 2008. 12. 017.
DOI: 10.1016/j.actbio.2008.12.017
Google Scholar
[8]
Misra RDK, Thein-Han WW, Mali SA, Somani MC, Karjalainen LP. Cellular activity of bioactive nanograined/ultrafine-grained materials. Acta Biomater 2010; 6: 2826–35. doi: 10. 1016/j. actbio. 2009. 12. 017.
DOI: 10.1016/j.actbio.2009.12.017
Google Scholar
[9]
Yilmazer H, Niinomi M, Cho K, Nakai M, Hieda J, Sato S, et al. Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion. Acta Mater 2014; 80: 172–82. doi: 10. 1016/j. actamat. 2014. 07. 041.
DOI: 10.1016/j.actamat.2014.07.041
Google Scholar
[10]
Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, et al. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C Mater Biol Appl 2013; 33: 2499–507. doi: 10. 1016/j. msec. 2013. 01. 056.
DOI: 10.1016/j.msec.2013.01.056
Google Scholar
[11]
Akahori T, Niinomi M, Fukui H, Ogawa M, Toda H. Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C, vol. 25, 2005, p.248.
DOI: 10.1016/j.msec.2004.12.007
Google Scholar
[12]
Sakai G, Nakamura K, Horita Z, Langdon TG. Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A 2005; 406: 268–73. doi: 10. 1016/j. msea. 2005. 06. 049.
DOI: 10.1016/j.msea.2005.06.049
Google Scholar
[13]
Gubicza J, Nam NH, Balogh L, Hellmig RJ, Stolyarov V V, Estrin Y, et al. Microstructure of severely deformed metals determined by X-ray peak profile analysis. J Alloys Compd 2004; 378: 248–52. doi: 10. 1016/j. jallcom. 2003. 11. 162.
DOI: 10.1016/j.jallcom.2003.11.162
Google Scholar
[14]
Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG. An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J Mater Res 2011; 11: 1880–90. doi: 10. 1557/JMR. 1996. 0239.
DOI: 10.1557/jmr.1996.0239
Google Scholar
[15]
Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 2004; 3: 511–6. doi: 10. 1038/nmat1180.
DOI: 10.1038/nmat1180
Google Scholar
[16]
Nazarov AA, Romanov AE, Valiev RZ. On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall Mater 1993; 41: 1033–40. doi: 10. 1016/0956-7151(93)90152-I.
DOI: 10.1016/0956-7151(93)90152-i
Google Scholar
[17]
Hao YL, Yang R, Niinomi M, Kuroda D, Zhou YL, Fukunaga K, et al. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4. 6Zr in relation to α" martensite. Metall Mater Trans A 2002; 33: 3137–44. doi: 10. 1007/s11661-002-0299-7.
DOI: 10.1007/s11661-002-0299-7
Google Scholar
[18]
Güleryüz H, Cimenoğlu H. Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy. Biomaterials 2004; 25: 3325–33. doi: 10. 1016/j. biomaterials. 2003. 10. 009.
DOI: 10.1016/j.biomaterials.2003.10.009
Google Scholar
[19]
Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: Biomaterials 2002; 23: 491–501. doi: 10. 1016/S0142-9612(01)00131-4.
DOI: 10.1016/s0142-9612(01)00131-4
Google Scholar
[20]
Niinomi M, Kuroda D, Fukunaga K, Morinaga M, Kato Y, Yashiro T, et al. Corrosion wear fracture of new β type biomedical titanium alloys. Mater Sci Eng A 1999; 263: 193–9. doi: 10. 1016/S0921-5093(98)01167-8.
DOI: 10.1016/s0921-5093(98)01167-8
Google Scholar
[21]
Zhou YL, Niinomi M, Akahori T, Fukui H, Toda H. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Mater Sci Eng A 2005; 398: 28–36. doi: 10. 1016/j. msea. 2005. 03. 032.
DOI: 10.1016/j.msea.2005.03.032
Google Scholar
[22]
Okazaki Y. A New Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr Opin Solid State Mater Sci 2001; 5: 45–53. doi: 10. 1016/S1359-0286(00)00025-5.
DOI: 10.1016/s1359-0286(00)00025-5
Google Scholar
[23]
Geetha M, Kamachi Mudali U, Gogia A., Asokamani R, Raj B. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros Sci 2004; 46: 877–92. doi: 10. 1016/S0010-938X(03)00186-0.
DOI: 10.1016/s0010-938x(03)00186-0
Google Scholar
[24]
Davis JR. Corrosion Understanding the Basics. Materials Park: ASM International; (2000).
Google Scholar