Superelasticity of Ti-Nb-Zr Alloys and their Medical Application

Article Preview

Abstract:

In this paper investigation results of behavior of promising superelastic alloys of Ti-Nb-Zr system in blood-vessel are presented. The possibility of their use in manufacturing of medical stents is examined. Based on analytical review of present scientific papers, four different alloys of Ti-Nb-Zr system are taken in consideration. A finite element modelling of stent behavior during delivery and opening stages is considered. These processes are done for two typical stent geometries and four alloys possessing different mechanical properties. Finite modelling results are analyzed to show the distribution of internal stresses, mechanical aspects of stent installation and effectiveness of various configurations to widen the narrowed vessel. Modeling has allowed to formulate recommendations for optimal mechanical characteristics of the superelastic alloy used for the manufacture of medical stents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2561-2566

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Shawl, W. Kadro, M. J. Domanski, F. L. Lapetina, A. A. Iqbal, K. G. Dougherty, S. T. Shahab, Safety and efficacy of elective carotid artery stenting in high-risk patients. Journal of the American College of Cardiology 35(7) (2000) 1721-1728.

DOI: 10.1016/s0735-1097(00)00618-5

Google Scholar

[2] C. C. Shih, S. J. Lin, Y. L. Chen, Y. Y. Su, S. T. Lai, G. J. Wu, K. H. Chung, The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. Journal of biomedical materials research (2000) 52(2) 395-403.

DOI: 10.1002/1097-4636(200011)52:2<395::aid-jbm21>3.0.co;2-b

Google Scholar

[3] T. W. Duerig, D. E. Tolomeo, M. Wholey, An overview of superelastic stent design. Minimally Invasive Therapy & Allied Technologies 9(3-4) (2000) 235-246.

DOI: 10.3109/13645700009169654

Google Scholar

[4] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Materialia 54 (2006) 2419–2429.

DOI: 10.1016/j.actamat.2006.01.019

Google Scholar

[5] C.G. Caro, T.J. Pedley, R.C. Schroter, W.A. Seed, The mechanics of the circulation. Moscow Mir 11 (1981) 624.

Google Scholar

[6] F. Sun, Y.L. Hao, S. Nowak, T. Gloriant, P. Laheurte, F. Prima, A thermo-mechanical treatment to improve the superelasti performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at. %) alloys. Journal of the mechanical behavior of biomedical materials (2011).

DOI: 10.1016/j.jmbbm.2011.06.003

Google Scholar

[7] J. Zhang, Fan Sun, Y. Hao, N. Gozdecki, E. Lebrun, P. Vermaut, R. Portier, T. Gloriant, P. Laheurte, F. Prima, Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy. Materials Science & Engineering A 563 (2013).

DOI: 10.1016/j.msea.2012.11.045

Google Scholar

[8] H. Tobe, H.Y. Kim, S. Miyazaki, Effect of Nb content on deformation textures and mechanical properties of Ti-18Zr-Nb biomedical alloys. Materials Transactions (2009) Vol. 50 (12) 2721-2725.

DOI: 10.2320/matertrans.ma200908

Google Scholar

[9] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Effect of nitrogen addition on superelasticity of Ti-Nb-Zr alloys. Materials Transactions (2009) 50(12) 2726-2730.

DOI: 10.2320/matertrans.ma200907

Google Scholar

[10] J. Il. Kim, H. Yo. Kim, T. Inamure, H. Hosoda, S. Miyazaki, Effect of annealing temperature on microstructure and shape memory characteristics of Ti-22Nb-6Zr (at. %) biomedical alloy. Materials Transactions (2006) 47 (3) 505-512.

DOI: 10.2320/matertrans.47.505

Google Scholar

[11] H.Y. Kim, J. Fu, H. Tobe, S. Miyazaki, Shape Memory and Superelasticity (2015) 1 107.

Google Scholar