Micro-Mechanical Responses of Ultrafine-Grained Materials Processed through High-Pressure Torsion

Article Preview

Abstract:

The processing of metals through the application of high-pressure torsion (HPT) provides the potential for achieving exceptional grain refinement in bulk metal solids. These ultrafine grains in the bulk metals usually show superior mechanical and physical properties. Especially, the development of micro-mechanical behavior is observed after significant changes in microstructure through processing and it is of great importance for obtaining practical future applications of these ultrafine-grained metals. Accordingly, this presentation demonstrates the evolution of small-scale deformation behavior through nanoindentation experiments after HPT on various metallic alloys including a ZK60 magnesium alloy, a Zn-22% Al eutectoid alloy and a high entropy alloy. Special emphasis is placed on demonstrating the essential microstructural changes of these materials with increased straining by HPT and the evolution of the micro-mechanical responses in these materials by measuring the strain rate sensitivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-47

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[2] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[3] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A 528 (2011) 8198-8204.

DOI: 10.1016/j.msea.2011.07.040

Google Scholar

[4] I. -C. Choi, D. -H. Lee, B. Ahn, K. Durst, M. Kawasaki, T.G. Langdon, J. -i. Jang, Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion, Scripta Mater. 94 (2015) 44-47.

DOI: 10.1016/j.scriptamat.2014.09.014

Google Scholar

[5] R.B. Figueiredo, T.G. Langdon, Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, Mater. Sci. Eng. A 501 (2009) 105-114.

DOI: 10.1016/j.msea.2008.09.058

Google Scholar

[6] S.A. Torbati-Sarraf, T.G. Langdon, Properties of a ZK60 magnesium alloy processed by high-pressure torsion, J. Alloy Compds. 613 (2014) 357-363.

DOI: 10.1016/j.jallcom.2014.06.056

Google Scholar

[7] R.B. Figueiredo, T.G. Langdon, Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, J. Mater. Sci. 45 (2010) 4827-4836.

DOI: 10.1007/s10853-010-4589-y

Google Scholar

[8] I. -C. Choi, Y. -J. Kim, Y.M. Wang, U. Ramamurty, J. -I. Jang, Nanoindentation behavior of nanotwinned Cu: Influence of indenter angle on hardness, strain rate sensitivity and activation volume, Acta Mater. 61 (2013) 7313-7323.

DOI: 10.1016/j.actamat.2013.08.037

Google Scholar

[9] H. Somekawa, C.A. Schuh, Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys, Acta Mater. 59 (2011) 7554-7563.

DOI: 10.1016/j.actamat.2011.08.047

Google Scholar

[10] H. -J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A 630 (2015) 90-98.

DOI: 10.1016/j.msea.2015.02.011

Google Scholar

[11] M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.

DOI: 10.1007/s10853-013-7687-9

Google Scholar

[12] T.S. Cho, H. -J. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Microstructural evolution and mechanical properties in a Zn-Al eutectoid alloy processed by high-pressure torsion, Acta Mater. 72 (2014) 67-79.

DOI: 10.1016/j.actamat.2014.03.026

Google Scholar

[13] I. -C. Choi, Y. -J. Kim, B. Ahn, M. Kawasaki, T.G. Langdon, J. -I. Jang, Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn-22% Al during high-pressure torsion, Scripta Mater. 75 (2014) 102-105.

DOI: 10.1016/j.scriptamat.2013.12.003

Google Scholar

[14] M. Kawasaki, T.G. Langdon, Review: achieving superplastic properties in ultrafine-grained materials at high temperatures, J. Mater. Sci. 51 (2016) 19-32.

DOI: 10.1007/s10853-015-9176-9

Google Scholar

[15] T. Uesugi, M. Kawasaki, M. Ninomiya, Y. Kamiya, Y. Takigawa, K. Higashi, Significance of Si impurities on exceptional room-temperature superplasticity in a high-purity Zn-22%-Al alloy, Mater. Sci. Eng. A 645 (2015) 47-56.

DOI: 10.1016/j.msea.2015.07.087

Google Scholar

[16] D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon, J.I. Jang, Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015).

DOI: 10.1557/jmr.2015.239

Google Scholar

[17] Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, P.Q. Dai, Hardening of an Al0. 3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater Lett. 151 (2015) 126-129.

DOI: 10.1016/j.matlet.2015.03.066

Google Scholar

[18] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015).

DOI: 10.1016/j.actamat.2015.06.025

Google Scholar